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Preface

Mathematical Fuzzy Logic (MFL) is a subdiscipline of Mathematical Logic. It is
a mathematical study of a certain family of formal logical systems whose algebraic
semantics involve some notion of truth degree. The central role of truth degrees in MFL
stems from three distinct historical origins of the discipline:
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Philosophical motivations: Any scientific theory is, at least initially, driven by
some kind of external motivation, i.e. some independent reality one would like
to understand and model by means of the theory. MFL is motivated by the need
to model correct reasoning in some particular contexts where more standard sys-
tems, such as classical logic, might be considered inappropriate. Namely, these
motivating contexts are those where the involved propositions suffer from a lack
of precision, typically because they contain some vague predicate, i.e. a property
lacking clear boundaries. Vague predicates (such as ‘tall’, ‘intelligent’, ‘poor’,
‘young’, ‘beautiful’, or ‘simple’) are omnipresent in natural language and reason-
ing and, thus, dealing with them is also unavoidable in linguistics. They constitute
an important logical problem as clearly seen when confronting sorites paradoxes,
where a sufficient number of applications of a legitimate deduction rule (modus
ponens) leads from (apparently?) true premises, to a clearly false conclusion: (1)
one grain of wheat does not make a heap, (2) a group of grains of wheat does not
become a heap just by adding one more grain, therefore: (3) one million grains
of wheat does not make a heap. One possible way to tackle this problem is the
degree-based approach related to logical systems studied by MFL (for other logi-
cal approaches see e.g. [8, 13, 15]). In this proposal one assumes that truth comes
in degrees which, in the case of the sorifes series, vary from the absolute truth of
‘one grain of wheat does not make a heap’ to the absolute falsity of ‘one million
grains of wheat does not make a heap’, through the intermediate decreasing truth
degrees of ‘n grains of wheat do not make a heap’.

Fuzzy Set Theory: In 1965 Lotfi Zadeh proposed fuzzy sets as a new mathemat-
ical paradigm for dealing with imprecision and gradual change in engineering
applications [16]. Their conceptual simplicity (a fuzzy set is nothing more than
a classical set endowed with a [0, 1]-valued function which represents the degree
to which an element belongs to the fuzzy set) provided the basis for a substantial
new research area and applications such as a very popular engineering toolbox
used successfully in many technological applications, in particular, in so-called
fuzzy control. This field is referred to as fuzzy logic, although its mathematical
machinery and the concepts investigated are largely unrelated to those typically
used and studied in (Mathematical) Logic. Nevertheless, there have been some
attempts to present fuzzy logic in the sense of Zadeh as a useful tool for dealing
with vagueness paradoxes (see e.g. [5]). These attempts have encountered strong
opposition among proponents of other theories of vagueness (see e.g. [8]).
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(3) Many-valued logics: The 20th century witnessed a proliferation of logical systems
whose intended algebraic semantics, in contrast to classical logic, have more than
two truth values (for a historical account see e.g. [3]). Prominent examples are 3-
valued systems like Kleene’s logic of indeterminacy and Priest’s logic of paradox,
4-valued systems like Dunn—Belnap’s logic, n-valued systems of Lukasiewicz
and Post, and even infinitely valued logics of Lukasiewicz logic [9] or Godel-
Dummett logic [2]. These systems were inspired by a variety of motivations, only
occasionally related to the aforementioned vagueness problems. More recently,
Algebraic Logic has developed a paradigm in which most systems of non-classical
logics can be seen as many-valued logics, because they are given a semantics in
terms of algebras with more than two truth values. From this point of view, many-
valued logics encompass wide well-studied families of logical systems such as rel-
evance logics, intuitionistic and superintuitionistic logics and substructural logics
in general (see e.g. [4]).

Mathematical Fuzzy Logic was born at the crossroads of these three areas. At the
beginning of the nineties of last century, a small group of researchers (including among
others Esteva, Godo, Gottwald, Héjek, Hohle, and Novak), persuaded that fuzzy set the-
ory could be a useful paradigm for dealing with logical problems related to vagueness,
began investigations dedicated to providing solid logical foundations for such a disci-
pline. In other words, they started developing logical systems in the tradition of Math-
ematical Logic that would have the [0, 1]-valued operations used in fuzzy set theory as
their intended semantics. In the course of this development, they realised that some of
these logical systems were already known such as Lukasiewicz and Godel-Dummett
infinitely valued logics. Both systems turned out to be strongly related to fuzzy sets be-
cause they are [0, 1]-valued and the truth functions interpreting their logical connectives
are, in fact, of the same kind (t-norms, t-conorms, negations) as those used to compute
the combination (resp. intersection, union, complement) of fuzzy sets. Several confer-
ences and a huge funded research project (COST action 15) brought together the afore-
mentioned scholars with researchers working on many-valued systems and fuzzy sets
yielding a fertile collaborative environment. These pioneering efforts produced a num-
ber of important papers and even some monographs (especially [7], but also [6, 12]).

As a result of this work, fuzzy logics have become a respectable family in the broad
landscape of non-classical logics studied by Mathematical Logic. It has been clearly
shown that fuzzy logics can be seen as a particular kind of many-valued system (or
substructural logic) whose intended semantics is typically based on algebras of linearly
ordered truth values. In order to distinguish it from the works on fuzzy set theory mis-
leadingly labeled as fuzzy logic, the study of these systems has been called Mathemati-
cal Fuzzy Logic. Moreover, being a subdiscipline of Mathematical Logic it has acquired
the typical core agenda of this field and is studied by many mathematically-minded re-
searchers regardless of its original motivations. Therefore, in the last years we have seen
the blossoming of MFL with a plethora of works on propositional, modal, predicate
(first and higher order) logics, their semantics (algebraic, relational, game-theoretic),
proof theory, model theory, complexity and (un)decidability issues, etc. There has also
been an intense discussion regarding the rdle of MFL in the study of vagueness and, in
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general, in the study of reasoning with imprecise information. It is now clear that MFL
cannot be the theory or even the logic of vagueness. However, many of the philosophical
arguments against fuzzy logic as a logic of vagueness in fact do not apply to MFL but to
fuzzy logic in the sense of Zadeh. In fact, there has been significant philosophical work
on vagueness using elements of MFL, e.g. [14].

The handbook More than one decade after the monographs [6, 7, 12] were published,
this handbook aims to be a new up-to-date systematic presentation of the best devel-
oped areas of MFL. Since they already constitute a very thick mathematical corpus, we
have purposefully decided to leave all motivations and applications out of the book and
concentrate only on the presentation of the theory. Therefore, this is a book on pure
Mathematical Logic, focusing on the study of a particular family of many-valued non-
classical logics. One will find here neither a presentation of fuzzy set theory and its
applications nor any discussion of vagueness or any other philosophical or linguistic is-
sue whatsoever. Nevertheless, the intended audience of the book can still be reasonably
wide, comprising at least the following groups of readers: (1) students of Logic that
should find here a systematic presentation of MFL where they can study the discipline
from scratch, (2) experts on MFL that may use it as a reference book for consultation,
(3) readers interested in fuzzy set theory and its applications looking for the logical
foundations of (some parts) of the area, and (4) readers interested in philosophical and
linguistical issues related to the vagueness phenomenon looking for a mathematical ap-
paratus amenable for dealing with some aspects of those issues.

It must be also emphasized that this is not a book written by a single team of authors,
but a collection of chapters prepared by distinguished experts on each area. However,
the editors have encouraged a reasonable level of homogeneity between the chapters, as
regards their structure and notation. It has been conceived as a two volume set with con-
secutive page enumeration and a global index at the end of each volume. The first vol-
ume starts with a gentle introduction to MFL assuming only some basic knowledge on
classical logic. The second chapter presents and develops a general and uniform frame-
work for MFL based on the notions of methods of Abstract Algebraic Logic. The third
chapter is a presentation of the deeply developed proof theory of fuzzy logics (an exten-
sive treatment can also be found in the monograph [10]). The fourth chapter presents
the standard algebraic framework for fuzzy logics based on classes of semilinear resid-
uated lattices. The fifth chapter closes the first volume with the study of Héjek’s BL
logic and its algebraic counterpart. The second volume of this handbook starts with the
sixth chapter devoted to another widely studied fuzzy logic, Lukasiewicz logic £, and
MV-algebras as its algebraic semantics (one may also consult the monographs [1, 11]).
The seventh chapter deals with a third distinguished fuzzy logic, Godel-Dummett logic,
and its variants. The eighth chapter studies fuzzy logics in expanded languages provid-
ing greater expressive power. The ninth chapter collects the known results on functional
representation of fuzzy logics and their free algebras. The last chapters are dedicated
to complexity issues: Chapter X studies the computational complexity of propositional
fuzzy logics, while Chapter XI is devoted to the arithmetical hierarchy of first-order
predicate fuzzy logics.
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