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With the development of several new 
directions of AI, including  explainable AI, 
ethical AI and knowledge-based AI, the 
corresponding directions of logical research 
are gaining momentum: causal reasoning, 
reasoning with norms and values, and 
knowledge graph reasoning, etc. In an open 
and dynamic environment, the main 
challenges for modeling such kinds of 
reasoning are to deal with information that 
is typically incomplete, uncertain, dynamic 
and confl icting, and to effectively explain 
the results and procedures of reasoning to 
ordinary human beings. The papers in this 
volume report some recent advantages of 
the research on related topics.
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Preface

We are delighted to introduce the proceedings of the Fourth International
Workshop on Logics for New-Generation Artificial Intelligence (LNGAI2024),
held in Hangzhou, China, at Zhejiang University from June 15th to 16th. This
workshop falls under the umbrella of the national key project – ’Research on
Logics for New Generation Artificial Intelligence’ (No.20&ZD047, 2021-2025).
The core aims of the LNGAI project encompass the advancement of theories
and techniques in non-monotonic logics and formal argumentation, along with
their applications in causal reasoning, knowledge graph reasoning, and reason-
ing about norms and values in the context of open, dynamic, and real-world
environments. The papers compiled in this volume of proceedings highlight ad-
vancements in the interdisciplinary research of logic and artificial intelligence.

For this workshop, we have accepted a total of eight papers, each of which
underwent rigorous peer-review by at least three. Furthermore, the proceed-
ings are enriched with an invited paper from a subproject leader of LNGAI,
alongside seven abstracts highlighting keynote presentations.

On one hand, the seven keynote talks highlight pivotal research trends,
encompassing the integration of Large Language Models with BOID, the ap-
plication of deep learning for dynamical system inference, the causality and
responsibility in Multi-Agent Systems, the alignment of AI values, and the
connection of prioritised default logic and structured argumentation, the ex-
planation method in answer set programming, and the categorization for ex-
plainable AI and human-machine interaction. More specifically, Jan Broersen
reviewed the BOID architecture and suggested new directions in relation to
Large Language Models (LLMs). Jun Pang provided an overview of recent
developments in deep learning methods for structural inference of dynamical
systems, with a focus on variational auto-encoders (VAEs) based methods.
Mehdi Dastani discussed the intertwined concepts of causality and responsibil-
ity in multi-agent systems, proposing a formal approach to model interactions
and analyze strategic decisions. Marija Slavkovik addressed AI value alignment
from the perspective of automating moral reasoning and decision-making for
autonomous systems. Leendert van der Torre compared prioritised default logic
(PDL) and structured argumentation based on the weakest link, proposing a
new variant of PDL and analyzing it within the framework of attack relation
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assignments. Yisong Wang, Thomas Eiter, Yuanlin Zhang and Fangzhen Lin
introduced a witness theory for answer set programs to explain the conclu-
sions of logic programs based on answer set semantics. Alessandra Palmigiano
discussed the dynamic nature of categories and their role in human cognition,
proposing a comprehensive logical theory of categorization for explainable AI
and human-machine interaction.

On the other hand, the 10 papers cover diverse topics in AI and logic,
including distributed and field knowledge using weighted modal logic, norma-
tive reasoning with balancing operators, recommendation logic, legal norms for
AI, epistemic injustice, decidability in tense logic, modal logic with counting,
semantic gaps in AI communication, and large language models’ biases in re-
sponsibility attribution. Other work explores LLMs’ capabilities in defeasible
reasoning, revealing challenges in handling such information. More specifi-
cally, Xiaolong Liang and Yı̀ N. Wáng refine the concept of distributed knowl-
edge by incorporating agents’ epistemic abilities and introduces field knowledge
as its dual, using epistemic logics interpreted through weighted models. Bin
Wei introduced a neuro-symbolic approach that combines LLMs and classi-
cal symbolic methods to enhance efficiency, accuracy, and interpretability in
pre-litigation mediation and legal outcome prediction. Aleks Knoks, Muyun
Shao, Leendert van der Torre, Vincent de Wit, and Liuwen Yu extend their
formal framework on normative reasoning by introducing numerical balanc-
ing operators to quantify and aggregate the weights of reasons. Fenrong Liu,
Wei Wang, and Sisi Yang introduce a new logical framework called Recom-
mendation Logic (RL) to analyze and enhance the reasoning processes behind
AI-driven recommendation systems, focusing on user preferences and providing
efficient model-checking solutions. Yiwei Lu and Zhe Yu investigate the inte-
gration of legal ontology with structured argumentation frameworks to adapt
norms for AI actions in legal contexts, utilizing non-monotonic reasoning to re-
flect dynamic shifts in legal principles. Joris Hulstijn, Huimin Dong, and Réka
Markovich explore various forms of epistemic injustice in automated decision-
making systems and propose a formalization using epistemic logic to address
knowledge discrepancies among different groups. Zhe Yu, Yiheng Wang and
Zhe Lin address the decidability of Horn sequent in intuitionistic tense logic S4
by establishing the finite model property, contributing significantly to the reso-
lution of an open problem in the field. Xiaoxuan Fu and Zhiguang Zhao explore
the model theoretic properties of modal logic with counting, ML(#), demon-
strating its unique characteristics in terms of model size, compactness, and
interpolation, and proving Halldén completeness for certain fragments. Yuey-
ing Chu, Jiaxin Zhang, and Peng Liu investigate whether large language models
like GPT-3.5 and GPT-4 display human-like biases when attributing respon-
sibility in scenarios involving automated and conventional vehicles. Zhaoqun
Li, Chen Chen, and Beishui Liao explore the capabilities of LLMs in defeasible
reasoning within the formal logic framework, revealing challenges in handling
defeasible information effectively.
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New directions and considerations for the
BOID

Jan Broersen

Utrecht University

Abstract

20 years ago, the BOID-architecture was put forward as an agent modelling frame-
work for reasoning about the selection of goals on the basis of Beliefs, Obligations,
(previous) Intentions and Desires. I will critically review our original proposal and
suggest new ways of thinking about the BOID, also in relation to LLMs.

1



Structural Inference of Dynamical Systems:
Recent Development and Future Directions

Jun Pang 1

Department of Computer Science & Institute for Advanced Studies
University of Luxembourg

Abstract

Dynamical systems are pervasive and critical in understanding phenomena across
various domains, from the majestic dance of celestial bodies governed by gravity
to the subtle ballet of chemical reactions. In the quest to unravel the complexities
of dynamical systems, the initial imperative is to unveil their inherent structure,
a key determinant of system organisation. Achieving this necessitates the deploy-
ment of structural inference methods capable of deriving the structure of dynamical
systems from their observed behaviours. In this talk, I will give an overview on
recent development of deep learning based methods for structural inference of dy-
namical systems [1,5], in particular those methods based on variational auto-encoder
(VAE) [2,3,6,7,9,4,8]. Through a comprehensive benchmarking study [10], I will also
present some key findings and discuss future research directions.

References

[1] Brugere, I., B. Gallagher and T. Y. Berger-Wolf, Network structure inference, A survey:
Motivations, methods, and applications, ACM Computing Surveys 51 (2018), pp. 24:1–
24:39.
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[3] Löwe, S., D. Madras, R. Z. Shilling and M. Welling, Amortized causal discovery: Learning
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[4] Pan, L., C. Shi and I. Dokmanić, A dynamical graph prior for relational inference, arXiv
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Causality and Responsibility in Multi-agent
Systems

Mehdi Dastani

Utrecht University

Abstract

Causality and responsibility are intertwined concepts that play an important role in
the reasoning of human and artificial intelligent systems in interactive multi-agent en-
vironments. These concepts have been extensively studied in the literature, resulting
in a plethora of views and interpretations of these concepts and their relationships.
In this presentation, I will introduce a particular view where a group of individu-
als is held responsible for an outcome if they caused the outcome while they had a
strategy to prevent the outcome. To formally instantiate this view, I will propose a
systematic approach to modeling interactions in a multi-agent environment based on
a given structural causal model. The generated multi-agent model is then used to
analyze and reason about the causal effects of agents’ strategic decisions and their
responsibility.
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Human norms, machine norms and AI value
alignment

Marija Slavkovik

University of Bergen

Abstract

The talks will consider the problem of AI value alignment from the perspective of the
problem of how to automate moral reasoning and decision making for autonomous
systems. Normative reasoning has been a sub-discipline in multi agent systems re-
search for a few decades. How does that fit in the age of LLMs? We will situate the
normative reasoning work in the larger problem of AI alignment and machine ethics,
by discussing the pertinent differences between how value alignment sees norms, why
value alignment needs norms and overall what is the role of logic in the world of deep
data processing.
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Weakest Link, Prioritised Default Logic and
Principles in Argumentation

Leendert van der Torre

University of Luxembourg

Abstract

In this article, we study procedural and declarative logics for defaults in modular
orders. Brewka’s prioritised default logic (PDL) and structured argumentation based
on weakest link are compared to each other in different variants. This comparison
takes place within the framework of attack relation assignments and the axioms (prin-
ciples) recently proposed for them by Dung. To this end, we study which principles
are satisfied by weakest link and disjoint weakest link attacks. With the aim of
approximating PDL using argumentation, we identify an attack defined from PDL
extensions,prove that each such PDL extension is a stable belief set under it, and
offer a similar principle-based analysis. We also prove an impossibility theorem for
Dung’s axioms that covers PDL-inspired attack relation assignments. Finally,a novel
variant of PDL with concurrent selection of defaults is also proposed,and compared to
these argumentative approaches. In sum, our contributions fill an important gap in
the literature created by Dung’s recent methods and open up new research questions
on these methods.

6



Witnesses for Answer Sets of Logic Programs

Yisong Wang 1

Guizhou University, Guiyang, Guizhou, China

Thomas Eiter

Institute of Logic and Computation, Technische Universität Wien, Austria

Yuanlin Zhang

Texas Tech University, USA

Fangzhen Lin

Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong

Abstract

Answer Set Programming (ASP) is a declarative problem solving paradigm that can
be used to encode a problem as a logic program whose answer sets correspond to
the solutions of the problem. It has been widely applied in various domains in AI
and beyond. Given that answer sets are supposed to yield solutions to the original
problem, the question of “why a set of atoms is an answer set” becomes important for
both semantics understanding and program debugging. It has been well investigated
for normal logic programs. However, for the class of disjunctive logic programs, which
is a substantial extension of that of normal logic programs, this question has not
been addressed much. In this talk, we propose a notion of reduct for disjunctive logic
programs and show how it can provide answers to the aforementioned question. First,
we show that for each answer set, its reduct provides a resolution proof for each atom
in it. We then further consider minimal sets of rules that will be sufficient to provide
resolution proofs for sets of atoms. Such sets of rules will be called witnesses and are
the focus of this article. We study complexity issues of computing various witnesses
and provide algorithms for computing them. In particular, we show that the problem
is tractable for normal and headcycle-free disjunctive logic programs, but intractable
for general disjunctive logic programs. We also conducted some experiments and
found that for many well-known ASP and SAT benchmarks, computing a minimal
witness for an atom of an answer set is often feasible. These results have been
published in ACM Transactions on Computational Logic volume 24 (2) in 2023.

Keywords: Logic programming, minimal models, answer set semantics, witness

1 yswang@gzu.edu.cn
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Categories & categorization

Alessandra Palmigiano

Vrije Universiteit Amsterdam

Abstract

Categories are cognitive tools that humans use to organize their experience, under-
stand and function in the world, and understand and interact with each other, by
grouping things together which can be meaningfully compared and evaluated. They
are key to the use of language, the construction of knowledge and identity, and the
formation of agents’ evaluations and decisions. Categorization is the basic operation
humans perform e.g. when they relate experiences/actions/objects in the present to
ones in the past, thereby recognizing them as instances of the same type. This is what
we do when we try and understand what an object is or does, or what a situation
means, and when we make judgments or decisions based on experience. The literature
on categorization is expanding rapidly in fields ranging from cognitive linguistics to
social and management science to AI, and the emerging insights common to these
disciplines concern the dynamic essence of categories, and the tight interconnection
between the dynamics of categories and processes of social interaction. However,
these key aspects are precisely those that both the extant foundational views on cat-
egorization struggle the most to address.
In this talk, I will discuss by way of examples how methods, insights, and techniques
pertaining to structural proof theory, algebraic logic, duality theory, and category the-
ory in mathematics can be used in synergy with one another to develop an overarching
logical theory of categories and categorization, on which new generation explainable
AI can be based, as well as a principled approach to human-machine interaction.
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Field Knowledge as a Dual to Distributed
Knowledge

A Characterization by Weighted Modal Logic

Xiaolong Liang

School of Philosophy
Shanxi University

92 Wucheng Road, Taiyuan, 030006, Shanxi, P.R. China

Yı̀ N. Wáng 1

Department of Philosophy (Zhuhai)
Sun Yat-sen University

2 Daxue Road, Zhuhai, 519082, Guangdong, P.R. China

Abstract

The study of group knowledge concepts such as mutual, common, and distributed
knowledge is well established within the discipline of epistemic logic. In this work, we
incorporate epistemic abilities of agents to refine the formal definition of distributed
knowledge and introduce a formal characterization of field knowledge. We propose
that field knowledge serves as a dual to distributed knowledge. Our approach uti-
lizes epistemic logics with various group knowledge constructs, interpreted through
weighted models. We delve into the eight logics that stem from these considerations,
explore their relative expressivity and develop sound and complete axiomatic systems.

Keywords: Epistemic logic, weighted model, epistemic skills, distributed knowledge,
field knowledge.

1 Introduction

The introduction is segmented into two sections. In Section 1.1, we elucidate
our interpretation of the concepts distributed knowledge and field knowledge.
Section 1.2 is dedicated to detailing our methodology for modeling these con-
cepts within the context of weighted (or labeled) modal logic.

1 Corresponding author. Email address: ynw@xixilogic.org. The author acknowledges
funding support by the National Social Science Fund of China (Grant No. 20&ZD047).
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1.1 Group notions of knowledge

Alice and Bob, both instrumentalists with additional expertise in philosophy
and mathematics respectively, engage in a conversation that shapes and re-
flects their knowledge. Classical epistemic logic [12,8,16] offers a framework for
dissecting their individual and collective knowledge, utilizing tools like Kripke
semantics among others.

Their mutual knowledge (a.k.a. everyone’s knowledge or general knowl-
edge) consists of statements known by both, essentially an intersection of their
individual knowledge. In Kripke semantics, this is interpreted by the union
of their respective epistemic uncertainty relations. Common knowledge is re-
cursive mutual knowledge: they know φ, know that they know φ, and so on,
ad infinitum. It is modeled by the transitive closure of the union of their
uncertainty relations.

Distributed knowledge expresses the sum of knowledge Alice and Bob would
have after full communication, but it is not merely the union of what each
knows. Though an interpretation based on the intersection of their individual
uncertainty relations does not fully align with its intended meaning either [18,3],
as it stands, this prevalent definition treats mutual knowledge as the semantic
dual to distributed knowledge.

In our scenario, we conceptualize distributed knowledge in light of the pro-
fessional competencies of Alice and Bob. Their distributed knowledge of a
statement φ is not understood as just a matter of aggregate knowledge, but
rather the outcome of their combined expertise in musical instruments, philos-
ophy, and mathematics. That is, φ is their distributed knowledge if their col-
laborative proficiency across these domains enables them to deduce φ. Thus,
we redefine distributed knowledge as the union of Alice and Bob’s epistemic
abilities, diverging from its classical interpretation.

Upon reevaluating distributed knowledge, we introduce the allied concept
of field knowledge. This notion encapsulates knowledge that stems from their
shared discipline – musical instruments, in this case. A statement φ falls under
Alice and Bob’s field knowledge if it is derivable exclusively from their musical
background. The formal interpretation of this concept will be presented in
Section 2.1, where we propose that field knowledge semantically functions as
the dual to distributed knowledge.

Developing a coherent characterization for the emergent concepts of dis-
tributed and field knowledge presents its challenges within classical epistemic
logics. We aim to craft a comprehensive framework that encompasses these new
ideas while preserving the established interpretations of mutual and common
knowledge.

1.2 Modeling knowledge in weighted modal logic

Even though the concept of similarity is intrinsically linked to knowledge, it
has not been traditionally emphasized or explicitly incorporated in the classical
representation of knowledge within the field of epistemic logic [12,8,16]. Over
recent years, researchers have started to probe this relationship more deeply,

   Field  Knowledge  as  a  Dual  to  Distributed  Knowledge
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marking a fresh direction in the field [17,7]. The technical framework for ex-
ploring this relationship has its roots in weighted modal logics [14,13,11]. This
approach offers a quantitative way of considering similarity, allowing for a more
nuanced understanding of knowledge.

In this paper, we adapt the concept of similarity from the field of data
mining, where it is primarily used to quantify the likeness between two data
objects. In data mining, distance and similarity measures are generally specific
algorithms tailored to particular scenarios, such as computing the distance
and similarity between matrices, texts, graphs, etc. (see, e.g., [1, Chapter 3]).
There is also a body of literature that outlines general properties of distance
and similarity measures. For instance, in [20], it is suggested that typically, the
properties of positivity (i.e., ∀x∀y : s(x, y) = 1 ⇒ x = y) and symmetry (i.e.,
∀x∀y : s(x, y) = s(y, x)) hold for s(x, y) – a binary numerical function that
maps the similarity between points x and y to the range [0, 1].

Our primary interest here does not lie in the measures of similarity them-
selves, but rather in modeling similarity and deriving from it the concepts of
knowledge. Our work distinguishes itself from recent advancements in epistemic
logic interpreted through the concepts of similarity or distance [17,7]. One key
difference is that we employ the standard language of epistemic logic. We do
not explicitly factor in the degree of similarity into the language, maintaining
the traditional structure of epistemic logic while reinterpreting its concepts in
the light of similarity.

In our setting, the phrase “a knows φ” (Kaφ) can be interpreted as “φ holds
true in all states that, in a’s perception by its expertise, resemble the actual
state.” A “state” in this context can be seen as a data object – the focus of
data mining. But it could also be treated as an epistemic object, a possible
situation, and so forth. We generalize the similarity function by replacing its
range [0, 1] with an arbitrary set of epistemic abilities. The degrees of similarity
may not have a comparable or ordered relationship.

The primary focus of this paper is on group knowledge, as elaborated in
Section 1.1. We explore epistemic logics across all combinations of these group
knowledge notions. As mutual knowledge is definable by individual knowledge
(with only finitely many agents), we have formulated eight logics (with or
without common, distributed, and field knowledge). The syntax and semantics
of them are introduced in Sections 2.1–2.2, and in Section 2.3, we compare the
expressive power of these languages.

For the axiomatization of the logics, we introduce sound and strongly com-
plete axiomatic systems for the logics excluding common knowledge. For those
incorporating common knowledge, we present sound and weakly complete ax-
iomatic systems (owing to the lack of compactness for the common knowledge
operators). These systems are then categorized based on whether their com-
pleteness results are obtainable via translation of models (Section 3.2.1) or
the canonical model method (Section 3.2.2), shown via a path-based canonical
model (Sections 3.2.3 and 3.2.4), or require a finitary method leading to a weak
completeness result (Section 3.2.5).

Liang  and  Wáng   

11



2 Logics

In this section, we present a comprehensive framework composed of eight dis-
tinctive logics. We supplement our discussion with illustrative examples, offer-
ing a visual representation of the models and their accompanying semantics.

2.1 Syntax

Our study utilizes formal languages rooted in the standard language of multi-
agent epistemic logic [8,16], with the addition of modalities that represent group
knowledge constructs. We particularly concentrate on the constructs of com-
mon knowledge, distributed knowledge and field knowledge.

In terms of our assumptions, we consider Prop as a countably infinite set of
propositional variables, and Ag as a finite, nonempty set of agents.

Definition 2.1 (formal languages) The languages utilized in our study are
defined by the following rules, where the name of each language is indicated in
parentheses on the left-hand side:

(EL) φ ::= p | ¬φ | (φ→ φ) | Kaφ
(ELC) φ ::= p | ¬φ | (φ→ φ) | Kaφ | CGφ
(ELD) φ ::= p | ¬φ | (φ→ φ) | Kaφ | DGφ
(ELF) φ ::= p | ¬φ | (φ→ φ) | Kaφ | FGφ
(ELCD) φ ::= p | ¬φ | (φ→ φ) | Kaφ | CGφ | DGφ
(ELCF) φ ::= p | ¬φ | (φ→ φ) | Kaφ | CGφ | FGφ
(ELDF) φ ::= p | ¬φ | (φ→ φ) | Kaφ | DGφ | FGφ
(ELCDF) φ ::= p | ¬φ | (φ→ φ) | Kaφ | CGφ | DGφ | FGφ

where p ∈ Prop, a ∈ Ag, and G represents a nonempty subset of Ag, signifying
a group. We also employ other boolean connectives, including conjunction (∧),
disjunction (∨), and equivalence (↔). EGφ is a shorthand for

∧
a∈GKaφ (note

that G is finite).

We employ formulas such as Kaφ to depict: “Agent a knows φ.” This is
often referred to as individual knowledge. Similarly, formulas like CGφ, DGφ,
EGφ and FGφ are used to convey that φ is common knowledge, distributed
knowledge, mutual knowledge (or everyone’s knowledge) and field knowledge of
group G, respectively. When the group G is a small set, e.g., {a, b}, we write
Cabφ as a shorthand for C{a,b}φ, and likewise for the operators Dab, Eab and
Fab.

Before delving into the formal semantics of these formulas, it is important
to first establish the semantic models that will be used for the intended logics.

2.2 Semantics

We introduce a type of similarity models for the interpretation of the languages.

Definition 2.2 (similarity models) A similarity model (model for short) is a
quintuple (W,A,E,C, ν) where:

• W is a nonempty set of states or nodes, referred to as the domain;
• A is an arbitrary set of abstract epistemic abilities (e.g., one’s expertise,
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skills, professions or privileges), which could be empty, finite or infinite; 2

• E :W ×W → ℘(A), known as an edge function, assigns each pair of states
a set of epistemic abilities, meaning that the two states are indistinguish-
able for individuals possessing only these epistemic abilities;

• C : Ag → ℘(A) is a capability function that assigns each agent a set of
epistemic abilities;

• ν :W → ℘(Prop) is a valuation.

and conforms to the following conditions (for all s, t ∈W ):

• Positivity: if E(s, t) = A, then s = t;
• Symmetry: E(s, t) = E(t, s).

The above definition requires further elucidation. Firstly, our approach
adopts a broad interpretation of epistemic abilities that may not necessarily be
arranged in a linear order, although such an arrangement is plausible [7,15].
Secondly, we perceive the edge function E as a representation of the relation
of similarity between states. The conditions of positivity and symmetry serve
as generalized forms of common conditions employed to characterize similarity
between data objects, as demonstrated in [20]. 3 Transitivity is usually not a
characteristic of this framework (that x and y, y and z are similar, does not
necessarily mean that x and z are similar), resulting in the failure to uphold
the principle of positive introspection (Kaφ → KaKaφ). Although it is easy
to impose transitivity, we choose not to enforce it here. Our framework allows
a more discerning evaluation of the tenability of positive introspection, and
for an examination of other significant constraints, see [15]. Thirdly, in this
context, similarities are deemed objective, signifying their constancy across
diverse agents.

Example 2.3 Alice and Bob are denoted as a and b, respectively. Consider
the fields mentioned in the beginning of the paper: musical instruments (α),
philosophy (β) and mathematics (γ), which are regarded as epistemic abilities
in this example. As set up in the beginning of the paper, Alice is a philosopher,
Bob a mathematician, and both of them are also instrumentalists. Four possible
states are named s1, . . . , s4, in which s1 is the factual state. From the viewpoint
of an instrumentalist, all the states look no difference. From the perspective of
a philosopher, no difference is between s1 and s3, and between s2 and s4. As
for a mathematician, s1 is indistinguishable to s2, and s3 to s4. Consider the

2 We have opted not to fix the set A of abilities as a given parameter of the logic, in contrast
to the set Ag of agents. The primary reason for this decision is our intention to examine
models that may extend the set A (see Section 3.2.1). It is important to note that the
validities and subsequent axiomatization of our logic remain unaffected when A is considered
to be an infinite set of abilities defined as a parameter of the logic.
3 An implicit condition often assumed, the converse of positivity, posits E(s, t) = A if s = t.
This condition entails the reflexivity of graphs, depicted by the characterization axiom T
(i.e., Kaφ → φ). In the realm of data mining, this condition implies that if two data objects
are identical (i.e., they refer to the same data object), they would receive the maximum value
from any similarity measure. This, however, is not always guaranteed.
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following propositions:
p: A standard modern piano has 88 keys in total.
q: Knowledge is defined by “justified true belief.”
r: Fermat’s Last Theorem has been proved.
The above scenario can be abstracted to a pointed model (M, s1), such that

M = (W,A,E,C, ν) and:

• W = {s1, s2, s3, s4}; A = {α, β, γ};
• E(s1, s2) = E(s3, s4) = {α, γ}, E(s1, s3) = E(s2, s4) = {α, β},
E(s1, s4) = E(s2, s3) = {α}, and for all x ∈W , E(x, x) = {α, β, γ};

• C(a) = {α, β} and C(b) = {α, γ};
• ν(s1) = {p, r}, ν(s2) = {p, q, r}, ν(s3) = {p} and ν(s4) = {p, q}.
Figure 1 illustrates the model M introduced above, where the factual state

s1 is framed by a rectangle and other states by an eclipse.

s1
p,rα,β,γ

α,γ

α,β
α

s2
p,q,r α,β,γ

α,β
α

s3
pα,β,γ α,γ

s4
p,q α,β,γ

C(a) = {α, β}
C(b) = {α, γ}

Fig. 1. Illustration of the model in Example 2.3.

In the real world (s1), one may come up with the following true sentences:

• Alice knows p and ¬q, but doesn’t know whether r.
To be formulated by: Ka(p ∧ ¬q) ∧ ¬(Kar ∨Ka¬r).

• Bob knows that p and r, but doesn’t know whether q.
To be formulated by: Kb(p∧r) ∧ ¬(Kaq∨Ka¬q).

• It is Alice and Bob’s distributed knowledge that p, not q, and r.
To be formulated by: Dab(p ∧ ¬q ∧ r).

• While p is Alice and Bob’s field knowledge, q and r are not.
To be formulated by: Fabp ∧ ¬(Fabq ∨ Fab¬q) ∧ ¬(Fabr ∨ Fab¬r).
We now introduce a formal semantics that makes the model in Example 2.3

indeed yields the true sentences listed above.

Definition 2.4 Given a formula φ, a model M = (W,A,E,C, ν) and a state
s ∈ W , we say φ is true or satisfied at s in M , denoted M, s |= φ, if the
following hold (the case for EGψ is redundant, but included for clarification):

M, s |= p ⇐⇒ p ∈ ν(s)
M, s |= ¬ψ ⇐⇒ not M, s |= ψ
M, s |= (ψ → χ) ⇐⇒ if M, s |= ψ then M, s |= χ
M, s |= Kaψ ⇐⇒ for all t ∈W , if C(a) ⊆ E(s, t) then M, t |= ψ
M, s |= EGψ ⇐⇒ M, s |= Kaψ for all a ∈ G
M, s |= CGψ ⇐⇒ for all positive integers n, M, s |= EnGψ
M, s |= DGψ ⇐⇒ for all t ∈W , if

⋃
a∈G C(a) ⊆ E(s, t) then M, t |= ψ

M, s |= FGψ ⇐⇒ for all t ∈W , if
⋂
a∈G C(a) ⊆ E(s, t) then M, t |= ψ,
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where EnGψ is defined recursively as E1
GE

n−1
G ψ, with E1

Gψ to mean EGψ. The
concepts of validity and satisfiability have their classical meaning.

In the definition above, the interpretation of Kaψ includes a condition
“C(a) ⊆ E(s, t),” which intuitively means that, “Agent a, with its abilities,
cannot discern between states s and t.” Thus, the formula Kaψ expresses that
ψ is true in all states t that a cannot differentiate from the current state s.

EGψ stands for the conventional notion of everyone’s knowledge, or mutual
knowledge as we call, stating that “Everyone in group G knows ψ” (see [10] for
details).

Common knowledge (CGψ) follows the classical fixed-point interpretation
as EGCGψ. In other words, CGψ implies that, “Everyone in group G knows
that ψ is true, and everyone in G knows about this first-order knowledge, and
also knows about this second-order knowledge, and so on.”

The concept of distributed knowledge (DGψ) in this paper diverges from the
traditional definitions found in literature. We redefine distributed knowledge as
being attainable by pooling together individual abilities. In practice, we swap
the intersection of individual uncertainty relations with the union of individual
epistemic abilities. Thus, ψ is deemed distributed knowledge among group G
if and only if ψ holds true in all states t that, when utilizing all the epistemic
abilities of agents in group G, cannot be differentiated from the present state.

An additional type of group knowledge, termed field knowledge (FGψ),
states that ψ is field knowledge if and only if ψ is true in all states t that,
using the shared abilities of group G, cannot be differentiated from the current
state. We will examine its logical properties in greater detail later on.

Upon defining the semantics, we derive eight logics, each associated with
one of the languages. We denote these logics using upright Roman capital
letters. E.g., the logic corresponding to the interpretation of the language
ELF is represented as ELF.

Example 2.5 Consider the model illustrated in Figure 2, we have the follow-
ing:

(i) M, s2 |= Cabp∧Eabp∧Dabp∧¬Fabp (note that for Cabp we check whether
p is true in all states along an “ab-path” – connected via {λ, π}, {λ, µ} or
{λ, π, µ} edges – that is, whether p is true at s2 through s4, regardless of
s1.)

(ii) M, s2 |= Fabq ∧ Eabq ∧Dabq ∧ ¬Cabq
(iii) M, s3 |= Dabr ∧ ¬Kar ∧ ¬Kbr ∧ ¬Eabr

s1
q

λ

λ

s2
p,q

λ,π,µ

λ,π

s3
p,q,r

λ,π,µ

λ,µ

s4
p

λ,π

C(a) = {λ, π}
C(b) = {λ, µ}

Fig. 2. Illustration of a model for Example 2.5. We do not draw a line between two
nodes when the edge between them is with no label (i.e., labeled by an empty set,
e.g., between s1 and s3).
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From the above, it is clear that none of the following formula schemes are
valid: CGφ → FGφ, EGφ → FGφ, DGφ → FGφ, FGφ → CGφ, EGφ → CGφ,
DGφ → CGφ, DGφ → EGφ, DGφ → Kaφ (where a ∈ G). In particular, that
φ is common knowledge implies that φ is distributed knowledge (|= CGφ →
DGφ), but does not imply that it is field knowledge (̸|= CGφ → FGφ). The
underlying reasoning for this is that when professions intersect, the range of
uncertain states can potentially expand significantly – sometimes even more so
than the increase that occurs when taking the transitive closure in the case of
common knowledge. Consequently, this expansion of uncertainty can lead to a
substantial contraction of field knowledge. Nonetheless, the standard principles
pertaining to individual, common, and distributed knowledge from classical
logic remain applicable, as indicated by the following proposition.

Proposition 2.6 We have the following validities for any given formula φ,
any agent a and any groups G and H (proofs omitted):

(i) Ka(φ→ ψ)→ (Kaφ→ Kaψ)
(ii) φ→ Ka¬Ka¬φ
(iii) CGφ→

∧
a∈GKa(φ ∧ CGφ)

(iv) D{a}φ↔ Kaφ
(v) DGφ→ DHφ (with G ⊆ H)

(vi) φ→ DG¬DG¬φ
(vii) F{a}φ↔ Kaφ
(viii) FGφ→ FHφ (with H ⊆ G)
(ix) φ→ FG¬FG¬φ

2.3 Expressivity

We adopt the conventional method for assessing a language’s expressive power,
which entails benchmarking it against the expressive capabilities of other lan-
guages. For an exact articulation of the relations in expressive power between
two compatibly interpreted languages, we direct the reader to [21, Def. 8.2].

It is evident that the expressive power of all eight languages under consid-
eration can be evaluated against one another. The comparative outcomes are
encapsulated in Figure 3, and the proofs are left in Appendix A.

3 Axiomatization

We will present sound and complete axiomatic systems for the logics introduced
in the preceding section. The names of these systems will be designated with
bold capital letters. For example, the axiomatic system for the logic ELF is
denoted as ELF.

3.1 Axiomatic systems

The system K is a widely recognized axiomatic system for modal logic (here it
refers to the multi-modal version with each Ka functioning as a box operator).
For simplicity, the axiom schemes are referred to as axioms in this context. The
axiom system KB is obtained by augmenting the system K with an additional
axiom B (i.e., φ → Ka¬Ka¬φ). In this context, we represent KB as K ⊕ B,
where the symbol ⊕ acts like a union operation for sets of axioms and/or rules.
For a comprehensive understanding of these axiomatic systems for modal logic,
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(a) when |Ag| = 1
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(b) when |Ag| ≥ 2

Fig. 3. The above two diagrams illustrate the relative expressive power of the lan-
guages. An arrow pointing from one language to another implies that the second
language is at least as expressive as the first. The “at least as expressive as” relation-
ship is presumed to be reflexive and transitive, meaning that a language is considered
at least as expressive as another if a path of arrows exists leading from the second to
the first (self-loops exist for all, but omitted). A lack of a path of arrows from one
language to another indicates that the first language is not at least as expressive as
the second. This implies that either the two languages are incomparable or that the
first language is more expressive than the second.

please refer to, say, [5]. Now, the system EL that we introduce for our base
logic EL is in fact KB.

Common knowledge is characterized by a set C consisting of the following
two inductive principles, represented by an axiom and a rule, which can be
found in [8]:

(C1) CGφ→
∧
a∈GKa(φ ∧ CGφ)

(C2) from φ→ ∧
a∈GKa(φ ∧ ψ) infer φ→ CGψ

Our the system ELC is then represented as EL⊕C.
Distributed knowledge is characterized by a set D of additional axioms:

(KD) DG(φ→ ψ)→ (DGφ→ DGψ)
(D1) D{a}φ↔ Kaφ
(D2) DGφ→ DHφ with G ⊆ H
(BD) φ→ DG¬DG¬φ

The resulting system for the logic ELD is then denoted as ELD = EL⊕D.
Field knowledge is characterized by the following set F:

(KF) FG(φ→ ψ)→ (FGφ→ FGψ)
(F1) F{a}φ↔ Kaφ
(F2) FGφ→ FHφ with H ⊆ G
(BF) φ→ FG¬FG¬φ
(NF) from φ infer FGφ

While the set F might at first glance seem analogous to D, there exists a
subtle yet crucial difference between the axioms F2 and D2 – specifically, the
positions of the groups G and H are swapped. This distinction necessitates
the introduction of the necessitation rule NF, while within the system ELD,
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the rule “from φ infer DGφ” is derivable. The validity of these axioms can be
verified with relative ease, and it is particularly noteworthy how the altered
order of G and H precisely mirrors the union/intersection of epistemic abilities
as observed in the semantic interpretations. Similarly, ELF is represented as
EL⊕ F.

Moving towards more complex axiomatic systems, they are constructed in
a similar manner. For any given string Ξ comprising elements from the set
{C,D,M}:

The axiomatic system ELΞ consists of all axioms and rules of EL, along
with those of the sets denoted by each character in string Ξ.

To illustrate, when Ξ is the string “CF,” ELCF stands for EL⊕C⊕ F, and
when Ξ is the string “CDF,” then ELCDF equates to EL⊕C⊕D⊕F. For
an extreme case, when Ξ is an empty string, ELΞ simply stands for EL.

We now turn our attention to validating these axiomatic systems to be
sound and complete for the corresponding logics. Soundness states that all the
theorems of an axiomatic system are valid sentences of the corresponding logic.
This can be simplified to the task of verifying that all the axioms of the system
are valid, and that all the rules preserve this validity. The soundness of the
proposed axiomatic systems can be confirmed without much difficulty. Though
we omit the proof, we state it as the following theorem. We will follow this up
with the completeness results in the subsequent section.

Theorem 3.1 (soundness) Every axiomatic system introduced in this sec-
tion is sound for its corresponding logic. 2

3.2 Completeness

In this section, we aim to demonstrate the completeness of all eight axiomatic
systems that were introduced earlier.

It is a widely accepted fact in classical epistemic logic that the inclusion of
common knowledge can cause a logic to lose its compactness. This leads to the
situation where its axiomatic system is not strongly complete, but only weakly
complete (see, e.g., [5,21]). This is also the case in our context. As a conse-
quence, we will demonstrate that the four systems that do not include common
knowledge are strongly complete axiomatic systems for their corresponding log-
ics, while the other four systems that do incorporate common knowledge are
only weakly complete.

The structure of this section is predicated on the various proof techniques
we employ. We start with a method that reduces the satisfiability from classical
epistemic logics to the logics we have proposed (Section 3.2.1). However, this
technique is only applicable to the system EL; the canonical model method
also works, and we provide a definition in Section 3.2.2 for the reference of
the reader. When dealing with systems that incorporate either distributed or
field knowledge, but not both (i.e., ELD and ELF), we utilize a path-based
canonical model method (Section 3.2.3). For the system that includes both
distributed and field knowledge, namely ELDF, while the path-based canon-
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ical model method still applies, a slightly more nuanced approach is required
(Section 3.2.4). Lastly, for the remaining systems incorporating common knowl-
edge, we merge the finitary method (which involves constructing a closure) with
the methods mentioned above (Section 3.2.5).

3.2.1 Proof by translation of satisfiability

Definition 3.2 (translation ρ) The mapping ·ρ from symmetric Kripke mod-
els to similarity models is such that, for any symmetric Kripke model N =
(W,R, V ), Nρ is the similarity model (W,Ag ∪ {b}, E, C, ν) with the same do-
main and:

• E is such that for all s, t ∈W , E(s, t) = {a ∈ Ag | (s, t) ∈ R(a)},
• b is a new agent which does not appear in Ag,
• C is such that for all a ∈ Ag, C(a) = {a}, and
• ν is such that for all s ∈W , ν(s) = {p ∈ Prop | s ∈ V (p)}.
In the translated model Nρ of the above definition, the set of epistemic

abilities is appointed as Ag ∪ {b}. We use agents as labels of edges, which
can intuitively be understood as an agent’s inability to distinguish the ongoing
state from current state when considering their epistemic abilities as a whole.
In the subsequent lemma, we demonstrate that this translation preserves truth.

Lemma 3.3 The following hold (proof in Appendix B):

(i) Given a symmetric Kripke model N , its translation Nρ is a similarity
model;

(ii) For any ELCD-formula φ, any symmetric Kripke model N and any state
s of N , N, s ⊩ φ iff Nρ, s |= φ. 4

The system EL is known to be complete for symmetric Kripke models. By
Lemma 3.3, such a model can be translated to a similarity model in a way that
preserves truth. So we get the following.

Theorem 3.4 EL is strongly complete for EL. 2

We note that it is possible to use the same method to achieve completeness
results for the systems ELC, ELD and ELCD, as long as their completeness
results in classical epistemic logic exist. However, to the best of our knowledge,
the completeness of these systems in Kripke semantics, while expected, has
never been explicitly established.

3.2.2 Proof by the canonical model method

We have demonstrated the completeness of EL using the method of translation.
This method is efficient and relies on the completeness result for its classical
counterpart interpreted via Kripke semantics. In other words, the translation
method cannot be employed for logics whose classical counterparts have not
been introduced or studied (for example, logics with field knowledge), or when

4 The operator FG is undefined in classical epistemic logic, so there is no point to consider
a language incorporated with this operator.
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a completeness result does not exist for their classical counterparts (for in-
stance, ELC, ELD and ELCD). In this section, we introduce a direct proof of
the completeness of EL using the canonical model method and extend this to
completeness proofs for other logics in later sections.

Definition 3.5 The canonical model for EL is the tuple M = (W,A,E,C, v)
such that:

• W is the set of all maximal EL-consistent sets of EL-formulas;
• A = ℘(Ag), the power set of all agents;
• E : W ×W → ℘(A) is defined such that for any Φ,Ψ ∈ W, E(Φ,Ψ) =⋃

a∈Ag Ea(Φ,Ψ), where

Ea(Φ,Ψ) =

{
C(a), if {χ | Kaχ ∈ Φ} ⊆ Ψ and {χ | Kaχ ∈ Ψ} ⊆ Φ,
∅, otherwise;

• C : Ag→ ℘(A) is such that for any agent a, C(a) = {G ⊆ Ag | a ∈ G};
• v : W→ ℘(Prop) is such that for any Φ ∈W, v(Φ) = {p ∈ Prop | p ∈ Φ}.
The discerning reader may first ascertain that the canonical model for EL

is indeed a model, and then proceed to demonstrate the completeness of EL by
employing conventional techniques. The specifics of these procedures are left
in Appendix C.

3.2.3 Proof using a path-based canonical model

When addressing logics that incorporate concepts of distributed and field
knowledge, the conventional canonical model technique is not suitable. To
overcome this challenge, there exists a methodology for logics with distributed
knowledge [9]. This technique, which traces its origins to the unraveling meth-
ods of [19], starts by analogously treating distributed knowledge as a form
of individual knowledge. The process involves creating a pseudo model that
embodies these aspects. This pseudo model is then unraveled into a tree-like
structure with paths. The resulting structure is further processed through an
identification/folding step to yield the target model.

An simplified approach has been proposed in [22], where the construction
of a path-based, tree-like model, referred to as a standard model, is advocated.
This approach eliminates the intermediate steps of unraveling and identifica-
tion/folding. We embrace this latter approach here, setting out to construct a
standard model directly.

Completeness of ELD

Definition 3.6 ⟨Φ0, G1,Φ1, . . . , Gn,Φn⟩ is called a canonical path for ELD, if:

• Φ0,Φ1, . . . ,Φn represent maximal ELD-consistent sets of ELD-formulas,
• G1, . . . , Gn denote groups of agents, i.e., nonempty subsets of Ag.

In the context of a canonical path s = ⟨Φ0, G1,Φ1, . . . , Gn,Φn⟩, we denote
Φn as tail(s). This also applies to canonical paths defined later.

Definition 3.7 The standard model for ELD is the tuple M = (W,A,E,C, v)
such that:
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• W is the set of all canonical paths for ELD;
• A = ℘(Ag);
• E : W×W→ ℘(A) is defined such that for any s, t ∈W, E(s, t) =





⋃
a∈G C(a), if t is s extended with ⟨G,Ψ⟩,

{χ | DGχ ∈ tail(s)} ⊆ Ψ and {χ | DGχ ∈ Ψ} ⊆ tail(s);⋃
a∈G C(a), if s is t extended with ⟨G,Ψ⟩,

{χ | DGχ ∈ tail(t)} ⊆ Ψ and {χ | DGχ ∈ Ψ} ⊆ tail(t);
∅, otherwise;

• C : Ag→ ℘(A) is such that for any agent a, C(a) = {G ∈ Ag | a ∈ G};
• v : W→ ℘(Prop) is such that for all s ∈W, v(s) = {p ∈ Prop | p ∈ tail(s)}.

Lemma 3.8 (standardness) The standard model for ELD is a model.

Proof. Note that ∅ /∈ C(a) for any agent a. This implies that for any s, t ∈
W, E(s, t) ̸= A, thereby meeting the criterion of positivity. Additionally, the
condition of symmetry is fulfilled as E is a commutative function. 2

Lemma 3.9 (Truth Lemma) Let M = (W,A,E,C, v) be the standard model
for ELD. For any s ∈W and ELD-formula φ, φ ∈ tail(s) iff M, s |=ELD φ.

Proof. We prove it by induction of φ. The boolean cases are easy by the
definition of ν and the induction hypothesis. The only interested cases are
φ = Kaψ and φ = DGψ.

Case φ = Kaψ: very similar to the case for DGψ given below.
Case φ = DGψ: Suppose DGψ /∈ tail(s), but M, s |=ELD DGψ. By def-

inition,
⋃
a∈G C(a) ⊆ E(s, t) implies M, t |=ELD ψ for any t ∈ W. We can

extend {¬ψ} ∪ {χ | DGχ ∈ tail(s)} ∪ {¬DG¬χ | χ ∈ tail(s)} to some max-
imal ELD-consistent set ∆+. Similar to the proof of Lemma C.2 we get⋃
a∈G C(a) ⊆ E(s, t) where t extends s with ⟨G,∆+⟩. By the induction hy-

pothesis we have M, t |=ELD ¬ψ. A contradiction!
For the opposite direction, suppose DGψ ∈ tail(s), but M, s ̸|=ELD DGψ.

Then there exists t ∈W such that M, t ̸|=ELD ψ and
⋃
a∈G C(a) ⊆ E(s, t). This

implies that there exists H ⊇ G, such that {χ | DHχ ∈ tail(s)} ⊆ tail(t) and
{χ | DHχ ∈ tail(t)} ⊆ tail(s). Since DGψ ∈ tail(s) implies DHψ ∈ tail(s),
we have ψ ∈ tail(t). By the induction hypothesis we have M, t |=ELD ψ, also
leading to a contradiction. 2

Theorem 3.10 ELD is strongly complete for ELD. 2

Completeness of ELF The completeness of ELF can be demonstrated in a
manner that parallels the completeness of ELD. While we will not delve into
the intricate details of the proofs, we will outline the necessary adaptations to
the definitions of the standard model.

A canonical path for ELF mirrors that for ELD. The only modification
required is the adjustment of the maximal consistent sets to align with the
axiomatic system being considered. When defining the standard model for
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ELF, we replace W with the set of all canonical paths for ELF, and let

E(s, t) =





⋂
a∈G C(a), if t is s extended with ⟨G,Ψ⟩,

{χ | FGχ ∈ tail(s)} ⊆ Ψ and {χ | FGχ ∈ Ψ} ⊆ tail(s),⋂
a∈G C(a), if s is t extended with ⟨G,Ψ⟩,

{χ | FGχ ∈ tail(t)} ⊆ Ψ and {χ | FGχ ∈ Ψ} ⊆ tail(t),
∅, otherwise.

Note that
⋃
a∈G C(a) = {H | H ∩ G ̸= ∅}, which includes all the shared

epistemic abilities of those groups H that intersects with G. Additionally,⋂
a∈G C(a) = {H | G ⊆ H}, which represents all the supersets of G.
By using analogous proof structures, we can demonstrate the standardness

of these models, show a Truth Lemma, and establish the completeness.

Theorem 3.11 ELF is strongly complete for ELF. 2

3.2.4 Incorporation of both distributed and field knowledge

We now discuss the logic and its axiomatic system that incorporate both dis-
tributed and field knowledge but exclude common knowledge, namely the logic
ELDF and the axiomatic system ELDF. The construction process requires
careful consideration of the intricate interaction between the two types of
knowledge modalities.

Definition 3.12 ⟨Φ0, I1,Φ1, . . . , In,Φn⟩ is a canonical path for ELDF, if:

• Φ0,Φ1, . . . ,Φn are maximal ELDF-consistent sets of ELDF-formulas;

• I1, . . . , In are of the form (G, d) or (G,m), with G denoting a group, and
“d” and “m” being just two distinct characters.

Definition 3.13 The standard model for ELDF is a tuple M = (W,A,E,C, v)
where A, C and v are defined just as in the standard model for ELD (Defini-
tion 3.7), and:

• W is the set of all canonical paths for ELDF;

• E : W×W→ ℘(A) is such that for any s, t ∈W, E(s, t) =





⋃
a∈G C(a), if t extends s with ⟨(G, d),Ψ⟩,

{χ | DGχ ∈ tail(s)} ⊆ Ψ and {χ | DGχ ∈ Ψ} ⊆ tail(s),⋃
a∈G C(a), if s extends t with ⟨(G, d),Ψ⟩,

{χ | DGχ ∈ tail(t)} ⊆ Ψ and {χ | DGχ ∈ Ψ} ⊆ tail(t),⋂
a∈G C(a), if t extends s with ⟨(G,m),Ψ⟩,

{χ | FGχ ∈ tail(s)} ⊆ Ψ and {χ | FGχ ∈ Ψ} ⊆ tail(s),⋂
a∈G C(a), if s extends t with ⟨(G,m),Ψ⟩,

{χ | FGχ ∈ tail(t)} ⊆ Ψ and {χ | FGχ ∈ Ψ} ⊆ tail(t),
∅, otherwise.

The standardness and the Truth Lemma can be achieved in a similar way,
and we leave a proof of the Truth Lemma in Appendix D for the careful reader.

Theorem 3.14 ELDF is strongly complete for ELDF. 2
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3.2.5 Proof by a finitary standard model

We now delineate the extension of the completeness results to the rest of the
logics with common knowledge, deploying a finitary method for this purpose.
We can only achieve weak completeness due to the non-compact nature of the
common knowledge modality. A difficulty, except for ELC, is that we also need
to address the modality for distributed or field knowledge.

In this section, we focus on providing the completeness proofs for ELCDF.
By making simple adaptations, one can obtain the completeness of the ax-
iomatic systems for their sublogics with common knowledge. We adapt the
definition of the closure of a formula presented in [22], to cater to formulas
with modalities DG and/or FG.

Definition 3.15 For an ELCDF-formula φ, we define cl(φ) as the minimal
set satisfying the subsequent conditions:

(i) φ ∈ cl(φ);
(ii) if ψ is in cl(φ), so are all subformulas of ψ;

(iii) ψ ∈ cl(φ) implies ∼ψ ∈ cl(φ), where ∼ψ = ¬ψ if ψ is not a negation and
∼ψ = χ if ψ = ¬χ;

(iv) Kaψ ∈ cl(φ) implies D{a}ψ, F{a}ψ ∈ cl(φ);
(v) D{a}ψ ∈ cl(φ) implies Kaψ ∈ cl(φ);
(vi) For groups G and H, if H appears in φ, then DGψ ∈ cl(φ) implies DHψ ∈

cl(φ);

(vii) CGψ ∈ cl(φ) implies {Kaψ,KaCGψ | a ∈ G} ⊆ cl(φ);
(viii) FGψ ∈ cl(φ) implies {Kaψ | a ∈ G} ⊆ cl(φ);
(ix) For groups G and H, if H appears in φ, then FGψ ∈ cl(φ) implies FHψ ∈

cl(φ).

Considering that the initial two clauses exclusively introduce subformulas of
φ, the subsequent three clauses incorporate formulas in a constrained manner,
and given that there are a finite number of groups mentioned in φ, with each
group containing only a finite number of agents, we can readily confirm that
cl(φ) for any given formula φ.

Subsequently, we introduce the concept of a maximal consistent set of for-
mulas within a closure. For a comprehensive definition, which is naturally
contingent on the specific axiomatic system under consideration, we refer to
established literature, for example, [21].

A canonical path for ELCDF in cl(φ) is defined similarly to that for ELDF
(Def. 3.12). Given an ELCDF-formula φ, we can construct the standard model
for ELCDF with respect to cl(φ) in a manner that closely mirrors the con-
struction of the standard model for ELDF (as per Def. 3.13). The primary
differences lie in bounding the canonical paths by the closure and adjusting the
logics accordingly. More specifically, we need to: (1) replace all occurrences
of “ELDF” with “ELCDF ,” and “ELDF” with “ELCDF”; (2) within the def-
inition of W, replace “canonical paths for ELDF” with “canonical paths for
ELCDF in cl(φ).” Moreover, it is easy to confirm that the standard model for
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ELCDF (in any closure of a given formula) is a model.

Lemma 3.16 (Truth Lemma) Given an ELCDF-formula θ, and let M =
(W,A,E,C, v) be the standard model for ELCDF with respect to cl(θ), for any
s ∈W and φ ∈ cl(θ), we have φ ∈ tail(s) iff M, s |=ELCDF φ.

Proof. We show the lemma by induction on φ. We omit the straightforward
cases (partially found in Appendix E) and focus on the cases concerning com-
mon knowledge.

Suppose CGψ ∈ tail(s), but M, s ̸|=ELCDF CGψ, then there are si ∈ W,
ai ∈ G, 0 ≤ i ≤ n for some n ∈ N such that: s0 = s, M, sn ̸|= ψ and C(ai) ⊆
E(si−1, si) for 1 ≤ i ≤ n. Since C(ai) ⊆ E(si−1, si), we have either {χ | DHχ ∈
tail(si−1)} ⊆ tail(si) for some H containing ai or {χ | F{ai}χ ∈ tail(si−1)} ⊆
tail(si). In both cases, {χ | Kaiχ ∈ tail(si−1)} ⊆ tail(si). Since CGψ ∈ tail(si)
implies KaiCGψ,Kaiψ ∈ tail(si), we can infer that CGψ,ψ ∈ tail(sn). By the
induction hypothesis, M, sn |=ELCDF ψ, leading to a contradiction.

Suppose CGψ ̸∈ tail(s), but M, s |=ELCDF CGψ. Thus for any si ∈ W and
ai ∈ G where 0 ≤ i ≤ n, such that: s0 = s and C(ai) ⊆ E(si−1, si), we have
M, sn |=ELCDF ψ and M, sn |=ELCDF CGψ. Collect all such possible sn above
and s into the set S; similarly collect all the tail(sn) and tail(s) into the set

Θ. We define δ =
∨
t∈S t̂ail(t), where for any t ∈ W, t̂ail(t) =

∧
tail(t). (In

general, for any finite set Ψ of formulas, we write Ψ̂ for
∧

Ψ.) We claim that
⊢ELCDF δ → Kaδ and ⊢ELCDF δ → Kaψ for any a ∈ G. By this claim and (C2)

we have ⊢ELCDF δ → CGψ, and then by t̂ail(s) → δ we have t̂ail(s) → CGψ.
In this way CGψ ∈ tail(s), which leads to a contradiction. As for the proof of
the claim:

(1) Suppose ⊬ELCDF δ → Kaδ, then δ∧¬Kaδ is consistent. Then there exists

t0 ∈ S such that ̂tail(t0)∧¬Kaδ is consistent. Notice that ⊢ELCDF

∨
t∈W t̂ail(t),

hence we have a consistent set ̂tail(t0)∧¬Ka¬ ̂tail(t1) for some t1 ∈W \ S; for
otherwise we have W \ S = ∅, hence ⊢ELCDF δ, which leads to ⊢ELCDF Kaδ,
contradicting with ⊬ELCDF δ → Kaδ. Thus we have {χ | Kaχ ∈ tail(t0)} ⊆
tail(t1), which implies {χ | D{a}χ ∈ tail(t0)} ⊆ tail(t1). Moreover, for any χ, if

D{a}χ ∈ tail(t1), then ̂tail(t0)∧¬Ka¬D{a}χ is consistent, hence ̂tail(t0)∧χ is
also consistent, thus χ ∈ tail(t0). So we have {χ | D{a}χ ∈ tail(t1)} ⊆ tail(t0).
Now we let t2 be t0 extended with ⟨({a}, d), tail(t1)⟩, we have C(a) ⊆ E(t0, t2).
Hence t2 ∈ S but tail(t2) = tail(t1) /∈ Θ. A contradiction!

(2) Suppose ⊬ELCDF δ → Kaψ, then δ ∧ ¬Kaψ is consistent. So there

exists t0 ∈ S such that ̂tail(t0) ∧ ¬Kaψ is consistent. Thus {∼ψ} ∪ {χ |
D{a}χ ∈ tail(t0)} ∪ {¬D{a}∼χ ∈ cl(θ) | χ ∈ tail(t0)} is consistent. Hence
it can be extended to some max consistent subset ∆+ in cl(θ). Let t1 be
t0 extended with ⟨({a}, d),∆+⟩, we have {χ | D{a}χ ∈ tail(t0)} ⊆ tail(t1).
Moreover, if D{a}χ ∈ tail(t1) = ∆+, then ¬D{a}χ /∈ ∆+, thus ¬D{a}∼¬χ =
¬D{a}χ ∈ cl(θ) and ¬χ /∈ tail(t0), which implies χ ∈ tail(t0). So we also
have {χ | D{a}χ ∈ tail(t1)} ⊆ tail(t0). Thus we have C(a) ⊆ E(t0, t1). Hence
t1 ∈ S and then M, t1 |=ELCDF ψ, which contradicts with ∼ψ ∈ tail(t1) by the
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induction hypothesis. 2

Theorem 3.17 ELCDF is weakly complete for ELCDF. 2

Building on the discussion earlier in this section, the completeness proofs
for ELC, ELCD and ELCF can be derived from the proofs for ELCDF. For
brevity, however, the intricate details of these adaptations are not included in
this paper.

4 Conclusion

We examined epistemic logics with all combinations of common, distributed
and field knowledge, interpreted in scenarios that consider agents’ epistemic
abilities, such as professions. We adopted a type of similarity model that
extends from a Kripke model by adding weights to edges, and studied the
axiomatization of the resulting logics.

The framework of our logics presents diverse possibilities for characterizing
the concept of knowability. Apart from interpreting knowability as known after
a single announcement [4], a group announcement [2], or after a group resolves
their knowledge [3], it is now conceivable to perceive knowability as known after
an agent acquires certain skills (epistemic abilities) from some source or from a
given group. Our framework also enables us to easily characterize forgetability
or degeneration through changes in epistemic abilities, a process that is not as
straightforward in classical epistemic logic.

Looking ahead, we aim to explore more sophisticated conditions on the
similarity relation, such as those introduced in [6]. It would also be of interest
to compare our framework with existing ones that use the same style of models,
as presented in [17,7].

A Proofs regarding Expressivity

In Figure 3, every language, with the exception of ELCDF , has an arrow point-
ing to its immediate superlanguages. This is clearly true, as by definition, ev-
ery language is at most as expressive as its superlanguages. In the case when
|Ag| = 1, a reverse arrow also exists between languages that either both contain
common knowledge or neither contain common knowledge.

Lemma A.1 When |Ag| = 1 (i.e., when there is only one agent available in
the language),

(i) EL ≡ ELD ≡ ELF ≡ ELDF
(ii) ELC ≡ ELCD ≡ ELCF ≡ ELCDF
(iii) ELDF ≺ ELC, and hence any language in the first clause are less expres-

sive than any language in the second clause.

Proof. 1 & 2. In the case when |Ag| = 1 there is only one agent, and since
D{a}φ and F{a}φ are equivalent to Kaφ, the operators for distributed and
mutual knowledge are redundant in this case. Hence the lemma.

3. We show that ELC ̸⪯ ELDF , and so ELDF ≺ ELC since ELDF ≡ EL ⪯
ELC by the first clause. Suppose towards a contradiction that there exists a
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formula φ of ELDF equivalent to C{a}p. Consider the set Φ = {En{a}p | n ∈
N} ∪ {¬C{a}p}. It is not hard to see that any finite subset of Φ is satisfiable,
but not Φ itself. Let k be the length of φ (refer to a modal logic textbook for
its definition), and suppose {En{a}p | n ∈ N, n ≤ k}∪{¬φ} is satisfied at a state

w in a model M = (W,A,E,C, ν). For any s, t ∈W , we say that s reaches t in
one step if C(a) ⊆ E(s, t). Consider the model Mk = (Wk, A,E,C, ν), where
Wk is set of states reachable from w in at most k steps. We can verify that
Mk, w |= {En{a}p | n ∈ N} ∪ {¬φ}, which implies that Φ is satisfiable, leading
to a contradiction. 2

We now proceed to elucidate the absence of arrows in the figure for the case
when |Ag| ≥ 2.

Lemma A.2 When |Ag| ≥ 2 (i.e., when there are at least two agents available
in the language),

(i) For any superlanguage L of ELC, and any sublanguage L′ of ELDF , it is
not the case that L ⪯ L′;

(ii) For any superlanguage L of ELD, and any sublanguage L′ of ELCF , it is
not the case that L ⪯ L′;

(iii) For any superlanguage L of ELF , and any sublanguage L′ of ELCD, it is
not the case that L ⪯ L′.

Proof. 1. The Proof of Lemma A.1(iii) can be used here to show that ELC ̸⪯
ELDF also when |Ag| ≥ 2.

2. Consider modelsM = (W,A,E,C, ν) andM ′ = (W ′, A,E′, C, ν′), where
A = {1, 2, 3}, C(a) = {1, 2}, C(b) = {1, 3} (if there are more agents in the
language, they are irrelevant here), and are illustrated below.

M
u1

p

1,2

1,3 u2

p

1,2

u4

p 1,3

u3

p

M ′ u′

p

1,2,3

We can show by induction that for any formula φ of ELCF , M,u1 |= φ iff
M ′, u′ |= φ. On the other hand, M,u1 |= Dab⊥ but M ′, u′ ̸|= Dab⊥. It means
that no ELCF-formula can discern between M,u1 and M ′, u′, while languages
with distributed knowledge can. Thus the lemma holds.

3. Consider similarity models M = (W,A,E,C, ν) and M ′ =
(W ′, A,E′, C, ν′), where A = {1, 2, 3}, C(a) = {1, 2}, C(b) = {1, 3}, and are
illustrated below.

M
u1

p

1,2,3

1 u2

1,2,3

M ′ u′

p

1,2,3

We can show by induction that for any formula φ of ELCD, M,u1 |= φ iff
M ′, u′ |= φ. Meanwhile, we have M,u1 ̸|= Fabp and M ′, u′ |= Fabp. It follows
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that no ELCD-formula can discern between M,u1 and M ′, u′, while languages
with field knowledge can. Thus the lemma holds. 2

As per Figure 3, Lemma A.2 suggests that there is not an arrow or a path
of arrows leading from ELC (or any language having an arrow or a path of
arrows originating from ELC) to ELDF (or any language with an arrow or a
path of arrows pointing to ELDF). Similar relationships exist between ELD
and ELCF , and between ELF and ELCD. Furthermore, in Figure 3, if there is
an arrow or a path of arrows leading from one language to another, and not the
other way round, this signifies that the first language is less expressive than the
second. If there is no arrow or path of arrows in either direction between two
languages, they are deemed incomparable. These observations lead us directly
to the following corollary.

Corollary A.3 When |Ag| ≥ 2,

(i) EL ≺ ELC, ELD ≺ ELCD, ELF ≺ ELCF and ELDF ≺ ELCDF ;
(ii) EL ≺ ELD, ELC ≺ ELCD, ELF ≺ ELDF and ELCF ≺ ELCDF ;
(iii) EL ≺ ELF , ELC ≺ ELCF , ELD ≺ ELDF and ELCD ≺ ELCDF ;
(iv) ELC, ELD and ELF are pairwise incomparable;

(v) ELCD, ELCF and ELDF are pairwise incomparable;

(vi) ELC is incomparable with ELDF ;
(vii) ELD is incomparable with ELCF ;
(viii) ELF is incomparable with ELCD.

B Proof of Lemma 3.3

We provide a proof for Lemma 3.3 while first repeating it:

Lemma B.1 The following hold:

(i) Given a symmetric Kripke model N , its translation Nρ is a similarity
model;

(ii) For any ELCD-formula φ, any symmetric Kripke model N and any state
s of N , N, s ⊩ φ iff Nρ, s |= φ.

Proof. (i) LetN = (W,R, V ) be a symmetric Kripke model, and its translation
Nρ = (W,Ag ∪ {b}, E, C, ν). For any a ∈ Ag ∪ {b} and s, t ∈W , we have:

a ∈ E(s, t) ⇐⇒ (s, t) ∈ R(a) (Def. 3.2)
⇐⇒ (t, s) ∈ R(a) (since R(a) is symmetric)
⇐⇒ a ∈ E(t, s). (Def. 3.2)

Hence Nρ satisfies symmetry. Furthermore, Nρ satisfies positivity, as there
cannot be any s, t ∈ W such that E(s, t) = A ∪ {b} and s ̸= t. Hence Nρ is a
similarity model.

(ii) Let N = (W,R, V ) and its translation Nρ = (W,Ag ∪ {b}, E, C, ν).
We show the lemma by induction on φ. The cases involving atomic propo-
sitions, Boolean connectives, and common knowledge are straightforward to
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verify since their semantic definitions follow a consistent pattern that facili-
tates smooth inductive reasoning. In this proof, we focus specifically on the
cases for individual and distributed knowledge. It should be noted that the
case for individual knowledge can be regarded as a particular instance of dis-
tributed knowledge; however, we include the details here for readers who seek
a thorough clarity:

N, s ⊩ Kaψ ⇐⇒ for all t ∈W , if (s, t) ∈ R(a) then N, t ⊩ ψ
⇐⇒ for all t ∈W , if a ∈ E(s, t) then N, t ⊩ ψ
⇐⇒ for all t ∈W , if C(a) ⊆ E(s, t) then N, t ⊩ ψ
⇐⇒ for all t ∈W , if C(a) ⊆ E(s, t) then Nρ, t |= ψ
⇐⇒ Nρ, s |= Kaψ.

N, s ⊩ DGψ ⇐⇒ for all t ∈W , if (s, t) ∈ ⋂
a∈GR(a), then N, t ⊩ ψ

⇐⇒ for all t ∈W , if (s, t) ∈ R(a) for all a ∈ G, then N, t ⊩ ψ
⇐⇒ for all t ∈W , if C(a) ⊆ E(s, t) for all a ∈ G, then N, t ⊩ ψ
⇐⇒ for all t ∈W , if

⋃
a∈G C(a) ⊆ E(s, t), then N, t |= ψ

⇐⇒ for all t ∈W , if
⋃
a∈G C(a) ⊆ E(s, t), then Nρ, t |= ψ

⇐⇒ Nρ, s |= DGψ.

C Completeness of EL by the Canonical Model Method

Lemma C.1 (canonicity) The canonical model for EL is a similarity model.

Proof. Let M = (W,A,E,C, v) be the canonical model for EL. Notice that
∅ /∈ C(a) for any agent a, so E(s, t) ̸= A for any s, t ∈ W, ensuring positivity.
The symmetry of the model is evident as E(s, t) = E(t, s) for any s, t ∈ W.
Therefore, M is a similarity model. 2

Lemma C.2 (Truth Lemma) Let M = (W,A,E,C, v) be the canonical model
for EL. For any Γ ∈W and any EL-formula φ, we have φ ∈ Γ iff M,Γ |=EL φ.

Proof. We will only demonstrate the case when φ is of the form Kaψ here.
Assuming Kaψ ∈ Γ, but M,Γ ̸|=EL Kaψ, there would exist a ∆ ∈ W such

that C(a) ⊆ E(Γ,∆) and M,∆ ̸|=EL ψ. Consequently, {χ | Kaχ ∈ Γ} ⊆
∆ (otherwise {a} /∈ E(Γ,∆), contradicting {a} ∈ C(a)). Thus, ψ ∈ ∆. It
follows from the induction hypothesis that M,∆ |=EL ψ, which results in a
contradiction.

For the opposite direction, suppose Kaψ /∈ Γ, but M,Γ |=EL Kaψ, then
for any ∆ ∈ W, C(a) ⊆ E(Γ,∆) implies M,∆ |=EL ψ. First, we assert that
{¬ψ} ∪ {χ | Kaχ ∈ Γ} ∪ {¬Ka¬χ | χ ∈ Γ} is EL consistent. If not, note
that for any η ∈ {χ | Kaχ ∈ Γ}, we have ¬Ka¬Kaη ∈ {¬Ka¬χ | χ ∈ Γ}.
As ⊢EL ¬Ka¬Kaη → η, it follows that {¬ψ} ∪ {¬Ka¬χ | χ ∈ Γ} is not
EL consistent. Therefore, we have ⊢EL

(∧
χ∈Γ0

¬Ka¬χ
)
→ ψ for some finite

subset Γ0 of Γ. This leads to ⊢EL Ka

(
(
∧
χ∈Γ0

¬Ka¬χ) → ψ
)
, and hence

⊢EL

∧
χ∈Γ0

Ka¬Ka¬χ → Kaψ. Since we have ⊢EL χ → Ka¬Ka¬χ for any

χ ∈ Γ0, it follows that we have ⊢EL

(∧
χ∈Γ0

χ
)
→ Kaψ. This deduction

implies that Kaψ ∈ Γ, which contradicts our previous assumption. Now, let
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us extend the set {¬ψ} ∪ {χ | Kaχ ∈ Γ} ∪ {¬Ka¬χ | χ ∈ Γ} to some maximal
EL-consistent set ∆+ of EL-formulas. Notice that Kaχ ∈ Γ implies χ ∈ ∆+

for any χ. Furthermore, if we suppose χ /∈ Γ, then ¬χ ∈ Γ, which leads
to ¬Ka¬¬χ ∈ ∆+, implying ¬Kaχ ∈ ∆+. Therefore, Kaχ ∈ ∆+ implies
χ ∈ Γ for any χ. Given these stipulations, we find that C(a) ⊆ E(Γ,∆).
However, by using the induction hypothesis, we see that M,∆ ̸|=EL ψ. As a
result, M,Γ ̸|=EL Kaψ. This conclusion contradicts our previous assumptions,
confirming this direction of the lemma. 2

With the Truth Lemma, we can state the following theorem:

Theorem C.3 (completeness of EL, with a direct proof) For any EL-
formula φ and any set Φ of EL-formulas, if Φ |=EL φ, then Φ ⊢EL φ.

Proof. To prove this, suppose the contrary: Φ ̸⊢EL φ. In this case, the set
Φ∪{¬φ} can be extended to a maximal EL-consistent set ∆+. In the canonical
model for EL, denoted M, we have M,∆+ |= χ for any formula χ ∈ Φ ∪ {¬φ}.
This conclusion leads to Φ ̸|=EL φ. 2

D Truth Lemma for Theorem 3.14

Lemma D.1 Let M = (W,A,E,C, v) be the standard model for ELDF. For
any s ∈W and any ELDF-formula φ, φ ∈ tail(s) if and only if M, s |=ELDF φ.

Proof. The proof is by induction on φ, and we only display the cases for
modalities.

Case φ = Kaψ. Suppose Kaψ ∈ tail(s), but M, s ̸|=ELDF Kaψ, then there
exists t ∈ W such that C(a) ⊆ E(s, t) and M, t ̸|=ELDF ψ. Therefore, {χ |
DGχ ∈ tail(s)} ⊆ tail(t) for some group G containing a or {χ | X{a}χ ∈
tail(s)} ⊆ tail(t). In both scenarios, ψ ∈ tail(t) since Kaψ ∈ tail(s) implies
DGψ, F{a}ψ ∈ tail(s). By the induction hypothesis, we have M, t |=ELDF ψ,
which leads to a contradiction. Suppose Kaψ /∈ tail(s), but M, s |=ELDF Kaψ,
then C(a) ⊆ E(s, t) implies M, t |=ELDF ψ for any t ∈ W. Extend {¬ψ} ∪ {χ |
Kaχ ∈ tail(s)} ∪ {¬Ka¬χ | χ ∈ tail(s)} to some maximal ELDF-consistent
set ∆+, thus C(a) ⊆ E(s, t) where t extends s with ⟨({a}, d),∆+⟩. By the
induction hypothesis, we have M, t |=ELDF ¬ψ, which is contradictary.

Case φ = DGψ. Suppose DGψ ∈ tail(s), but M, s ̸|=ELDF DGψ, then
there exists some t ∈ W such that

⋃
a∈G C(a) ⊆ E(s, t) and M, t ̸|=ELDF ψ.

Therefore, {χ | DHχ ∈ tail(s)} ⊆ tail(t) for some group H such that G ⊆ H.
We have ψ ∈ tail(t) since DGψ ∈ tail(s) implies DHψ ∈ tail(s). By the
induction hypothesis, we have M, t |=ELDF ψ, which leads to a contradiction.
Suppose DGψ /∈ tail(s), but M, s |=ELDF DGψ, then

⋃
a∈G C(a) ⊆ E(s, t)

implies M, t |=ELDF ψ for any t ∈ W. Extend {¬ψ} ∪ {χ | DGχ ∈ tail(s) ∪
{¬DG¬χ | χ ∈ tail(s)}} to some maximal ELDF-consistent set ∆+, thus⋃
a∈G C(a) ⊆ E(s, t) where t extends s with ⟨(G, d),∆+⟩. We have M, t |=ELDF

¬ψ by the induction hypothesis. A contradiction!
Case φ = FGψ. Suppose FGψ ∈ tail(s), but M, s ̸|=ELDF FGψ, then there

exists t ∈ W such that
⋂
a∈G C(a) ⊆ E(s, t) and M, t ̸|=ELDF ψ. Therefore,
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{χ | FHχ ∈ tail(s)} ⊆ tail(t) for some groupH such thatH ⊆ G or {χ | DJχ ∈
tail(s)} ⊆ tail(t) for some group J such that G ∩ J ̸= ∅. In both scenarios,
we have ψ ∈ tail(t) since FGψ ∈ tail(s) implies FHψ,DJψ ∈ tail(s). By the
induction hypothesis, we have M, t |=ELDF ψ, which leads to a contradiction.
Suppose FGψ /∈ tail(s), butM, s |=ELDF FGψ, then

⋂
a∈G C(a) ⊆ E(s, t) implies

M, t |=ELDF ψ for any t ∈ W. Extend {¬ψ} ∪ {χ | FGχ ∈ tail(s)} ∪ {¬FG¬χ |
χ ∈ tail(s)} to some maximal ELDF-consistent set ∆+, thus

⋂
a∈G C(a) ⊆

E(s, t) where t extends s with ⟨(G,m),∆+⟩. By the induction hypothesis,
M, t |=ELDF ¬ψ, which leads to a contradiction. 2

E Extra Cases for the Proof of Lemma 3.16

The proof of Lemma 3.16 in the main text (p. 16) only contains the case for
common knowledge. Here we supplement the cases for distributed and field
knowledge for the careful reader (individual knowledge can be treated as a
special case of the two).

Case φ = DGψ. The direction from DGψ ∈ tail(s) to M, s |=ELCDF DGψ is
similarly to the proof of Lemma D.1. For the other direction, suppose DGψ ̸∈
tail(s), but M, s |=ELCDF DGψ, then

⋃
a∈G C(a) ⊆ E(s, t) implies M, t |=ELCDF

ψ for any t ∈ W. Notice that {∼ψ} ∪ {χ | DGχ ∈ tail(t0)} ∪ {¬DG∼χ ∈
cl(θ) | χ ∈ tail(t0)} is a consistent subset of cl(θ). Extend it to a maximal
ELCDF-consistent set ∆+ in cl(θ). Thus, by a similar method to the proof
of ⊢ELCDF δ → Kaψ in Lemma 3.16, we have {χ | DGχ ∈ tail(s)} ⊆ ∆+ and
{χ | DGχ ∈ ∆+} ⊆ tail(s). Let t be s extended with ⟨(G, d),∆+⟩, we have⋃
a∈G C(a) ⊆ E(s, t). By the induction hypothesis we have M, t ̸|=ELCDF ψ,

contradicting with M, s |=ELCDF DGψ.
The case when φ = FGψ is similar to the case for distributed knowledge ex-

cept that we extend the consistent set {∼ψ}∪{χ | FGχ ∈ tail(t0)}∪{¬FG∼χ ∈
cl(θ) | χ ∈ tail(t0)} to get a maximal ∆+ in the closure, and let t be s extended
with ⟨(G,m),∆+⟩.
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Abstract

In this paper, we introduce a neuro-symbolic approach for legal tasks, combining
the strengths of large language models (LLMs) and classical symbolic methods to
enhance the efficiency, accuracy, and interpretability of pre-litigation mediation and
legal outcome prediction. This approach addresses the challenges posed by over-
whelming caseloads and the complexity of legal texts.
The first component of the framework focuses on pre-litigation mediation. A hybrid
model integrating LLMs, such as GPT-4, and classical machine learning algorithms
is employed. The process begins with the vectorization of case data using OpenAI’s
embedding models to construct a dynamic legal knowledge base, facilitating the dis-
tinction between simple and hard cases through similarity comparisons. For undeter-
mined cases, GPT-4 is used to extract key elements, followed by outcome prediction
using traditional machine learning models. Bert-type models are then applied for the
final classification, ensuring high accuracy and recall rates.
The second component extends to legal outcome prediction. Deep neural networks
and human-in-the-loop inputs are used for accurate classification of petitions. This
involves the use of supervised learning methods to handle the diverse and complex
nature of legal documents. The integration of LLMs enhances the extraction and
analysis of semantic information from extensive legal texts, improving the system’s
robustness and adaptability.
Experimental results validate the effectiveness of the hybrid framework, demonstrat-
ing superior performance in terms of accuracy, precision, and interpretability. This
approach not only improves the decision-making process in pre-litigation mediation
but also offers a promising solution for broader legal tasks. The neuro-symbolic frame-
work represents a significant advancement in the application of AI to law, combining
the strengths of LLMs and symbolic reasoning to address practical challenges in legal
adjudication.

Keywords: neuro-symbolic approach, large language models, pre-litigation
mediation, legal outcome prediction, GPT-4, Bert-type models, interpretability
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Abstract

The more recent philosophical literature concerned with foundational questions about
normativity often appeals to the notion of normative reasons, or considerations that
count in favor or against actions, and their interaction. The interaction between rea-
sons is standardly conceived of in terms of weighing reasons on (normative) weight
scales. Knoks and van der Torre [8] have recently proposed a formal framework that
allows one to think about the interaction between reasons as a kind of inference pat-
tern. This paper extends that framework by introducing and exploring what we call
numerical balancing operators. These operators represent the weights or magnitudes
of reasons by means of numbers, and they are particularly well-suited for capturing
the intuition of aggregating and weighing reasons. We define a number of concrete
classes of balancing operators and explore them using a principle-based analysis.

Keywords: reasons, weighing, detachment, principle-based analysis.

1 Introduction

The notion of normative reasons has been playing an increasingly important
role in the philosophical literature tackling foundational questions about nor-
mativity. In the practical domain, normative reasons are standardly understood
to be facts that speak in favor of or against actions. 1 Thus, the fact that you
have made a promise to a friend is a reason that speaks in favor of your keeping
the promise, and the fact that throwing this punch would result in harming

1 The locus classicus is Scanlon [13, p. 17]. See also [11], [12], [19], among many others.
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someone is a reason that speaks against throwing the punch. The interaction
between normative reasons is standardly taken to determine the deontic sta-
tuses of actions—whether they are permissible, obligatory, or forbidden—and
this interaction itself is usually made sense of by analogy with weight scales. 2

On the simplest construction, these weight scales work roughly as follows. The
reasons that speak in favor of some action ϕ (positive reasons) go in one pan of
the scales, while those that speak against ϕ (negative reasons) go in the other.
If the overall weight (or magnitude) of reasons in the first pan is greater than
the overall weight of reasons in the second, ϕ is obligatory. If the overall weight
of reasons in the second pan is greater, ϕ is forbidden. If the pans are equally
balanced, ϕ is optional, that is, both ϕ and not-ϕ are permissible. 3

While most of the work theorizing about the interaction between normative
reasons and their relation to the overall deontic statuses of actions has been
carried out informally, there are some exceptions. One such is a recent paper
of Knoks and van der Torre [8]. 4 Our main goal in this paper is to adjust the
approach of Knoks and van der Torre and apply it to (richer) structures in
which reasons are associated with numerical weights and deontic statuses are
assigned to actions on the basis of these weights—with this, the approach is
steered closer to the way the interaction between reasons is conceived of in the
informal (philosophical) literature. To reach our goal, we introduce the formal
notion of numerical balancing operators, formulate some concrete classes of
such operators, and carry out a principle-based analysis of them. The results
we present in this paper show that adding numerical weights to the picture
makes a huge difference: some of the core principles formulated in [8] no longer
hold in general, and new principles need to be formulated to distinguish the
operators.

The rest of this paper is structured as follows. In Section 2, we recall some
basic notions from Knoks and van der Torre [8]. In Section 3, we extend the
framework with numerical weights and introduce the core notion of numerical
balancing operators. In Section 4, we introduce six concrete classes of balancing
operators, and in Section 5, we present our principle-based analysis. Section
6 clarifies the relationship between the results we present here and the more
general framework of Knoks and van der Torre [8]. Finally, Section 7 concludes
and hints at some ideas for future research.

2 Preliminaries

In this section, we recall some definitions from [8]. The two basic building blocks
in that paper are an infinite set A and an abstract set of values V. Given that
we will be interested in what Knoks and van der Torre call balancing operations,

2 See, for instance, [1], [2], [9], [15], [17], [18].
3 For the most careful (informal) analysis of the weight scales metaphor, see [18], for a good
introduction, see [9].
4 Other notable exceptions include Horty’s [5], [6] default logic-based framework and the
recent approaches that draw on decision and probabily theory [3], [10], [14].
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we will work with a concrete set of values, namely, {+,−, 0}. Our formal notion
of a reason is then defined thus:

Definition 2.1 [Reasons] Let A be an infinite set, called the universe of dis-
course and let V be the set {+,−, 0}, called values. A reason r is a triple of
the from (x, y, v) where x and y are elements of A and v ∈ {+,−} is the value
associated with a reason, also called the polarity of r. 5

The next important notion is that of a context :

Definition 2.2 [Contexts] A context c is a pair of the form (R, y) where R is
a finite set of reasons, and y is an element of A, called the issue.

Contexts are meant to represent particular scenarios or situations. Each con-
text can be thought of as asking a question about some action—this is why
we call y an issue: is it the case that y ought to be taken, that y ought not
to be taken, or that it is permissible to take y and also not to take it (that
is, y is optional)? The set of reasons R of a context, in turn, is comprised of
the considerations that are relevant for answering this question. We use U to
denote the set of all possible contexts, that is, the set of contexts that can be
constructed by Definitions 2.1–2.2.

Formally, balancing operations are functional relations between contexts
and values. Intuitively, they can be thought of as answers to questions posed
by contexts. If the context (R, y) is assigned a +, then y ought to be taken. If
it is assigned a −, then y ought not to be taken. And if it is assigned a 0, then
y is optional.

Definition 2.3 [Balancing operations] A balancing operation, denoted by B,
is a functional relation between contexts and values, that is, B ⊆ U × V such
that, for any (c, v), (c′, v′) ∈ B, if c = c′, then v = v′.

With Definition 2.3 on the table, we are in a position to formulate princi-
ples that balancing operations might satisfy. Before we recall some important
principles from [8], however, let us introduce some useful notation:

• Where v ∈ {+, 0,−}, we let v stand for the value that is opposite to v, that
is: v = − if v = +; v = + if v = −; and v = 0 if v = 0.

• Where r = (x, y, v) is a reason, let action(r) = y and polarity(r) = v.

• Where R is a set of reasons and y ∈ A, the set of reasons from R that
speak in favor of y is the set pos(R, y) = {r ∈ R : r = (x, y,+)}; the set
of reasons from R that speak against y is the set neg(R, y) = {r ∈ R : r =
(x, y,−)}; and the set of reasons from R that are relevant to y is the set
Ry = pos(R, y) ∪ neg(R, y).

• When talking about sets of contexts, we can distinguish between the set of all
possible contexts, denoted by U , and the set of contexts under consideration,

5 The reader familiar with the philosophical literature on reasons may notice that our tech-
nical concept corresponds to what is often called the reason relation.
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denoted by C. The latter is the set of contexts for which the balancing
operation that we are discussing at a given point is defined.

While Knoks and van der Torre formulate a handful of principles, here we
recall the two that, they claim, are particularly basic, intuitive, and important
because they formalize properties that seem to be inherent in the metaphor
of weighing reasons on scales. These principles are Relevance and Neutrality.
The intuitive idea behind Relevance is that the values assigned to an issue y
within a context must be based only on the reasons that are directly related to
y, and, thus, that reasons that are not related to y can be removed from the
context without affecting the result.

Principle 2.4 (Relevance) A balancing operation B satisfies Relevance just
in case if ((R, y), v) ∈ B and ((Ry, y), v′) ∈ B, then v = v′. 6

Turning to Neutrality, it is meant to capture the intuition that the values
+ and − should be treated equally: if we switch the polarities of all reasons
in a given context, then the value that is assigned to the context should also
switch.

Principle 2.5 (Neutrality) Given a set of reasons R, let R′ = {(x, y, v) :
(x, y, v) ∈ R}. A balancing operation B satisfies Neutrality just in case if
((R, y), v) ∈ B and ((R′, y), v′) ∈ B, then v′ = v.

3 Numerical balancing operators

An important part of the intuitive picture of weighing reasons on scales is that
one reason can have more weight than another, and that the weights of multiple
reasons can add up. The formal notion of balancing operations does not allow
us to represent this idea explicitly. The main goal of this section then is to
formulate an analogous notion—that of (numerical) balancing operators—that
will allow us to do that.

As a first step, we introduce the notion of a weight system.

Definition 3.1 [Weight systems] Let C be a set of contexts. The set of reason-
context pairs of C, written as XC , is the set {(r, (R, y)) : r ∈ R, (R, y) ∈ C}.
Then a weight system for C, written as wC , is a pair (W, fw) where W ⊆ R+ is
a set of weights and fw : XC →W is a total function.

It is natural to wonder about the effects of context shifts on the weights
of reasons, or to ask whether any given reason has to have the same weight
in every context. The positions that have been explored in the philosophical
literature here range from extreme atomist views, on which any given reason’s

6 Notice that, in general, a balancing operation B can be such that ((R, y), v) ∈ B, while
((Ry , y), v′) /∈ B. It’s not difficult to define a constraint that rules out this possibility. We
can think of it as a variation on Relevance. Principle (Relevance′): A balancing operation
B satisfies Relevance′ just in case if ((R, y), v) ∈ B, then there exists some value v′ such that
((Ry , y), v′) ∈ B. It shouldn’t be difficult to see that Relevance and Relevance′ entail the
following stronger principle. Principle (Relevance′′): A balancing operation B satisfies
Relevance′′, Re′′, just in case if ((R, y), v) ∈ B, then ((Ry , y), v) ∈ B.
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weight and polarity are context-independent, to extreme holist views, on which
a reason’s weight and its polarity can both change from context to context.
Since ours is a general and formal exploration, we do not want to commit to
any particular view here. However, we also want to be able to express any view
lying on the atomism-holism spectrum formally. While the above definition
allows reasons to be associated with different weights in different contexts—
naturally inviting a holist picture—we can impose further constraints on weight
systems to express views that are closer to the atomist side of the spectrum.
Thus, our next definition captures one of the core tenets of atomism: that the
weights of reasons are context-independent.

Definition 3.2 [Fixed weight systems] Let C be a set of contexts and wC =
(W, fw) a weight system for C. Then wC is called a fixed weight system just in
case, for any reason r and any pair of contexts c, c′ ∈ C, we have fw(r, c) =
fw(r, c′).

The scales metaphor has it that the weights of individual reasons with the
same polarity get aggregated into a collective weight, and that the collective
weights of positive and negative reasons determine the final position of scales.
Since in our framework this final position corresponds to the value associated
with a context, we need a bridge from contexts supplemented with weight
systems to values. This bridge is provided by what we call procedures:

Definition 3.3 [Procedures] Let U be the set of all contexts and W the of
set of all weight systems for U . A procedure is a function P : U × W → V
associating contexts and weight systems with values.

Notice that procedures are independent of weight systems: we can apply the
same procedure to contexts with different weight systems, or different proce-
dures to contexts with the same weight system.

Now we have all the ingredients we need to define balancing operators (our
substitute for balancing operations from [8]). These, in effect, combine weight
systems and procedures:

Definition 3.4 [Balancing operators] A balancing operator, denoted by Bo, is
a triple (C, wC , P) where C is a set of contexts, wC a weight system for C, and
P a procedure.

In the next section, we introduce several concrete (classes of) balancing
operators. Before we turn to them, however, let’s formulate some general prin-
ciples that balancing operators can satisfy, and we start by restating Relevance
and Neutrality from Section 2 as principles for balancing operators:

Principle 3.5 (Relevance) A balancing operator Bo = (C, wC, P) satisfies
Relevance, Re, just in case if there are v and v′ such that P((R, y), wC) = v
and P((Ry, y), wC) = v′, then v = v′. 7

7 The counterpart of the stronger version of Relevance discussed in footnote 6 would run
as follows. Principle (Relevance′′): A balancing operator Bo = (C, wC , P) satisfies
Relevance′′, Re′′, just in case if P((R, y), wC) = v, then P((Ry , y), wC) = v.
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Principle 3.6 (Neutrality) Given a set of reasons R, let R′ = {(x, y, v) :
(x, y, v) ∈ R}. A balancing operator (C, wC, P) satisfies Neutrality, Ne, just
in case if P((R, y), wC) = v and P((R′, y), wC) = v′, then v′ = v.

Recall our definition of fixed weight systems. We can use it to formulate
another principle or constraint on balancing operators:

Principle 3.7 (Fixed Weight) A balancing operator Bo = (C, wC, P) satis-
fies Fixed Weight, FiWe, just in case wC is a fixed weight system.

According to atomism, not only the weights of reasons are fixed, but also
their polarity. This idea can, again, be expressed in the form of a principle:

Principle 3.8 (Fixed Polarity) A balancing operator Bo = (C, wC, P) sat-
isfies Fixed Polarity, FiPo, just in case, for any reason r = (x, y, v), if there
is a context (R, y) ∈ C such that r ∈ R, then there is no (R′, y) ∈ C such that
(x, y, v) ∈ R′.
With these two principles, we can formulate extreme atomism as a class of
balancing operators.

Definition 3.9 [Atomist balancing operators] Let Bo be a balancing operator.
We call Bo atomist just in case Bo satisfies both Fixed Polarity and Fixed
Weight.

And given that holism is defined in opposition to atomism, it is also straight-
forward to formulate.

Definition 3.10 [Holist balancing operators] Let Bo be a balancing operator.
We call Bo holist just in case it is not atomist.

It’s worth noting that Fixed Weight and Fixed Polarity illustrate the flexi-
bility of the formal notion of a balancing operator: we can formulate different
principles some of which have to do with weight systems, others with the struc-
ture of contexts, and yet others with procedures.

4 Some concrete balancing operators

In this section, we introduce six classes of balancing operators. The unifying
element of each class is the procedure. The first three classes correspond to
three simple and intuitive operations on numbers: addition, multiplication and
maximum. The forth class supplements the first of these with a threshold.
Finally, the ideas behind our last two operators come from the discussion of
(possible) views one might have about the workings of weight scales in Tucker
[16].

The first class of operators is based on simple addition. The context (R, y)
gets assigned the value + if the sum weight of reasons for y is strictly greater
than the sum weight of reasons against y; it gets assigned − if the sum weight
of reasons against y is strictly greater than the sum weight of reasons for y;
and it gets assigned 0 otherwise.

Definition 4.1 [Additive Balancing Operators] Let Bo = (C, wC ,P+) be a
balancing operator. Then it is called an Additive Balancing Operator, Add, just

38



Knoks, Shao, van der Torre, de Wit, and Yu

in case:

P+((R, y), wC) =





+ if
∑
r∈pos(R,y) fw(r, (R, y)) >

∑
r∈neg(R,y) fw(r, (R, y))

− if
∑
r∈pos(R,y) fw(r, (R, y)) <

∑
r∈neg(R,y) fw(r, (R, y))

0 otherwise

The second class of balancing operators is based on multiplication. A con-
text gets assigned + in case the product of weights of positive reasons (for y)
is greater than that of negative reasons; it gets assigned − in case the product
of weights of negative reasons is greater than that of positive reasons; and it
gets assigned 0 otherwise.

Definition 4.2 [Multiplicative Balancing Operators] Let Bo = (C, wC ,P×) be
a balancing operator. Then it is called a Multiplicative Balancing Operator,
Mul, just in case :

P×((R, y), wC) =





+ if
∏
r∈pos(R,y) fw(r, (R, y)) >

∏
r∈neg(R,y) fw(r, (R, y))

− if
∏
r∈pos(R,y) fw(r, (R, y)) <

∏
r∈neg(R,y) fw(r, (R, y))

0 otherwise

The balancing operators belonging to the third class we discuss determine
the value of context by comparing the maximal weights of positive and negative
reasons. A context gets assigned + if the maximal weight of positive reasons is
greater than that of negative reasons; it gets assigned − if the maximal weight
of negative reasons is greater than that of positive reasons; and it gets assigned
0 if the weights are equal.

Definition 4.3 [Maximizing Balancing Operators] Let Bo = (C, wC ,Pm) be a
balancing operator. Then it is called a Maximizing Balancing Operator, Max,
just in case:

Pm((R, y), wC) =





+ if Max({fw(r, (R, y)) : r ∈ pos(R, y)}) >
Max({fw(r, (R, y)) : r ∈ neg(R, y)})

− if Max({fw(r, (R, y)) : r ∈ pos(R, y)}) <
Max({fw(r, (R, y)) : r ∈ neg(R, y)})

0 otherwise

The balancing operators that belong to the fourth class work with a thresh-
old on the weights of reasons. The basic idea here is that a reason can make
a difference for which value gets assigned to a context only in case its weight
is above a certain threshold. In the following definition, this idea is combined
with the familiar operation of addition:
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Definition 4.4 [(Additive) Threshold Balancing Operators] Let Bo =
(C, wC ,Pt) be a balancing operator. Then it is called an (Additive) Thresh-
old Balancing Operator, (Add)Thr, just in case:

Pt((R, y), wC) =





+ if
∑
r∈pos(R,y)∧fw(r,(R,y))>t fw(r, (R, y)) >∑

r∈neg(R,y)∧fw(r,(R,y))>t fw(r, (R, y))

− if
∑
r∈pos(R,y)∧fw(r,(R,y))>t fw(r, (R, y)) <∑

r∈neg(R,y)∧fw(r,(R,y))>t fw(r, (R, y))

0 otherwise

It’s worth emphasizing that a threshold is not an operation, but, rather, a
gatekeeping device that precludes reasons with (relatively) low weights from
having any effect on the value assigned to a context. Definition 4.4 adds a
threshold to addition. It should be clear that the operations of multiplication
and taking the maximum that we used to define balancing operators above can
also be supplemented with a threshold.

Now we turn to the final two classes of balancing operators. Both of these
are inspired by the discussion in Tucker [16], who works in an informal setting
and formulates the counterparts of our balancing operators in terms of permis-
sion. Since we have been working with obligations above, we re-state Tucker’s
ideas in terms of obligations.

The first of these two classes formalizes what Tucker calls relative weight
satisficing : ϕ is permissible just in case the reasons against ϕ are no more
than twice as weighty as the reasons for ϕ. 8 Restating this idea in terms
of obligations, we get the following: ϕ is obligatory just in case the reasons
against ϕ are at most twice as weighty as the reasons for ϕ and the reasons for
ϕ are (strictly) more than twice as weighty as the reasons against ϕ. Since the
second conjunct entails the first, we can simplify: ϕ is obligatory just in case
the reasons for ϕ are more than twice as weighty as the reasons against ϕ. The
formal definition, then, runs as follows:

Definition 4.5 [Relative Weight Satisficing Operators] Let Bo = (C, wC ,PR)
be a balancing operator. Then it is called a Relative Weight Satisficing Oper-
ator, RelSat, just in case:

PR((R, y), wC) =





+ if
∑
r∈pos(R,y) fw(r, (R, y)) > 2

∑
r∈neg(R,y) fw(r, (R, y))

− if 2
∑
r∈pos(R,y) fw(r, (R, y)) <

∑
r∈neg(R,y) fw(r, (R, y))

0 otherwise

Our final class of balancing operators corresponds to what Tucker calls
absolute weight satisficing. (This view is meant to be in tension with the idea

8 See [16, p. 373ff].
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of weighing reasons on weight scales.) According to absolute weight satisficing,
ϕ is permissible if the reasons for ϕ have a weight of at least 100 (no matter how
much weight the reasons against ϕ have), and it is not permissible otherwise. 9

Notice that it is straightforward to define a similar sort of operator—that is, an
operator that is sensitive to positive reasons only—in terms of obligations: ϕ is
obligatory if the reasons for ϕ have a weight of at least 100, and it is forbidden
(impermissible) otherwise. The formal definition then runs thus:

Definition 4.6 [Absolute Weight Satisficing Operators] Let Bo = (C, wC ,PA)
be a balancing operator. Then it is called an Absolute Weight Satisficing Op-
erator, AbsSat, just in case:

PA((R, y), wC) =

{
+ if

∑
r∈pos(R,y) fw(r, (R, y)) > 100

− otherwise

Perhaps, one note about the final two class of operators is in order before
we leave this section: we followed Tucker in setting the threshold at 100 in PA,
as well as in requiring that the reasons against ϕ cannot be more than two
times as weighty as the reasons for ϕ to be permissible in PR. We could define
versions of these operators using other numbers.

5 Principle-based analysis

In this section, we formulate four principles and use them to compare the
balancing operators defined in Section 4. We start with the formulation of the
principles—the first comes from Knoks and van der Torre [8]; the latter three
are new. Then we turn to a discussion, of our results and some complications.

The first principle is Polarity Monotony. It says that, if a balancing operator
assigns + to a context and a positive reason is added, then the operator will still
assign + to the context; and similarly, if the operator assigns − to a context
and a negative reason is added, then it will still assign − to the context.

Principle 5.1 (Polarity Monotony) A balancing operator Bo = (C, wC ,P)
satisfies Polarity Monotony, PoMn, just in case, for all P((R, y), wC) = v where
v 6= 0, if (R ∪ {(x, y, v)}, y) ∈ C, then P((R ∪ {(x, y, v)}, y), wC) = v.

Our second principle is called Commensurate Removal. It says that for
every context, if we remove a pair of opposite reasons with the same weight,
then the value assigned to the context doesn’t change.

Principle 5.2 (Commensurate Removal) A balancing operator Bo =
(C, wC ,P) satisfies Commensurate Removal, CoRe, just in case, if
P((R, y), wC) = v, then for each pair of reasons r, r′ ∈ R such that
polarity(r) = polarity(r′) and fw(r, (R, y)) = fw(r′, (R, y)), we have
P((R\{r, r′}, y), wC) = v.

Our next principle is called Sensitivity. It says that, for every equally-
balanced context—that is, every context to which 0 is assigned—adding a new

9 See [16, p. 378ff].
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reason will cause the new context to be assigned a value that equals the polarity
of that reason.

Principle 5.3 (Sensitivity) A balancing operator Bo = (C, wC ,P) satisfies
Sensitivity, Se, just in case, if P((R, y), wC) = 0 and there is a v such that
P((R ∪ {r}, y), wC) = v, then v = polarity(r).

Finally, our final principle is Union Monotony. It says that if a balancing
operator assigns the value v to two contexts, then it will also assign v to the
union of these contexts.

Principle 5.4 (Union Monotony) A balancing operator Bo = (C, wC ,P)
satisfies Union Monotony, UnMn, just in case, if P((R1, y), wC) = v,
P((R2, y), wC) = v, and (R1 ∪R2, y) ∈ C, then P((R1 ∪R2, y), wC) = v.

Now that we have the principles, they can be used to analyze and compare
the operators. However, there is a complication: the framework that we have
set up is so unconstrained that, in the general case, (almost) none of the prin-
ciples are satisfied by any of the operators. 10 This has to do, in particular,
with the fact that our formal notion of a weight system (Definition 3.1) allows
for unconstrained change of reasons’ weights from one context to another. But
let’s recall our (brief) discussion of atomism and holism from Section 3 here.
Atomists say that reasons weights and polarities are the same in all contexts,
whereas extreme holists say that the weights of the same reason in two contexts
can be wildly different. We wanted to be in a position to express all sorts of
views lying on the atomism-holism spectrum in our framework, and, without
imposing further constraints, it effectively imposes an extreme holist picture.
On reflection, it should be no surprise that the balancing operators from Sec-
tion 4 do not satisfy any of the principles if extreme holism is at work in the
background.

What we present below then is a principle-based analysis of those balancing
operators from Section 4 which also satisfy Fixed Weight, that is, we restrict
attention to balancing operators with fixed weight systems.

Proving that a given operator does (or does not) satisfy some principle is
more tedious than difficult. Here are two sample proofs:

Proposition 5.5 Relative weight satisficing (Definition 4.5) with Fixed
Weight (Principle 3.7) does not satisfy Sensitivity (Principle 5.3).

Proof. Consider a relative weight satisficing operator (C, wC , PR) where
C = {c1, c2}; c1 = ({r1, r2}, y1), c2 = ({r1, r2, r3}, y1); r1 = (x1, y1,+),
r2 = (x2, y1,−), r3 = (x3, y1,+); fw(r1, c1) = fw(r2, c1) = 5, and fw(r3, c2) =
0.5. Notice that

∑
r∈pos({r1,r2},y) fw(r, c1) = fw(r1, c1) = 5, and that∑

r∈neg({r1,r2},y) fw(r, c1) = fw(r2, c1) = 5. From this and Definition 4.5, we

get PR(c1, wC) = 0. For Sensitivity to be satisfied, we would have to have
PR(c1 ∪ {r}, wC) = + for every context c1 ∪ {r} where r = (x, y,+). Notice
that

∑
r∈pos({r1,r2,r3},y) fw(r, c2) = fw(r1, c2) + f2(r3, c2) = 5 + 0.5 = 5.5, and

10The only exception is Absolute Weight Satisficing which (vacuously) satisfies Sensitivity.
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Add Mul Max (Add)Thr RelSat AbsSat

3.5 Re X X X X X X
3.6 Ne - - - - - -

5.1 PoMn X - X X X X
5.2 CoRe X X - X - -
5.3 Se X - - - - X

5.4 UnMn - - X - - -

Table 1
Summary of the principle-based analysis, assuming Fixed Weight

that
∑
r∈neg({r1,r2,r3},y) fw(r, c2) = fw(r2, c2) = 5. From this and Definition

4.5, we have PR(c2, wC) = 0. 2

Proposition 5.6 Maximizing balancing (Definition 4.3) with Fixed Weight
(Principle 3.7) satisfies Polarity Monotony (Principle 5.1).

Proof. Let Bo = (C, wC ,Pm) be a maximizing balancing operator with a
fixed weight system. Consider an arbitrary context c = (R, y) ∈ C such that
Pm((R, y), wC) = v and v 6= 0. Assume that there is some reason r′ = (x, y, v)
and a context (R ∪ {r′}, y) ∈ C. To establish that Polarity Monotony is
satisfied, we need to show that Pm((R ∪ {r′}, y), wC) = v. Without loss of
generality, we assume that v = +. From Pm((R, y), wC) = v and Defini-
tion 4.3, we know that max({fw(r, (R, y)) | r ∈ pos(R, y)}) = P > N =
max({fw(r, (R, y)) | r ∈ neg(R, y)}). Now notice that fw(r′, (R∪ {r′}, y)) > 0,
and that in (R ∪ {r′}, y) reasons have the same weights that they had in
(R, y). From here, max({fw(x, (R ∪ {r′}, y)) | r ∈ pos(R, y) ∪ {r′}}) =
max(P, fw(r′, (R ∪ {r′}, y))) ≥ P > N = max({fw(r, (R, y)) | r ∈ neg(R, y)}).
And this is enough to conclude that Pm((R ∪ {r}, y), wC) = +.

2

The proofs of other propositions—that is, the propositions that show which
of the remaining operators do (or do not) satisfy which propositions—are
equally straightforward. We leave them for a technical report and let Table
1 summarize the results that they establish: the topmost row lists the balanc-
ing operators; the leftmost column lists the principles; the remaining cells state
whether the given operator does (X) or doesn’t (−) satisfy the given principle.
For example, the third column makes it clear that the class of multiplicative
operators (this is what Mul stand for) satisfy only two principles, namely, Rel-
evance (Rel) and Commensurate Removal (CoRe).

It may be surprising to see that none of the operators satisfy Neutrality.
Recall that Knoks and van der Torre [8] thought that both Relevance and
Neutrality formalize properties that seem to be inherent in the metaphor of
weighing reasons on scales. It turns out that the operators do not, in general,
satisfy Neutrality with the assumption of Fixed Weight for the same reason that
they do not, in general, satisfy all other principles without the assumption of
Fixed Weight: nothing in the definition of fixed weight systems precludes them
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from assigning (x, y,+) and (x, y,−) different weights in different contexts.
We can, of course, define a notion in the vicinity of fixed weight systems

that makes this impossible.

Definition 5.7 [Symmetric weight systems] Let C be a set of contexts and
wC = (W, fw) a weight system for C. Then wC is called a symmetric weight
system just in case, for any pair of reasons r = (x, y,+), r′ = (x, y,−) and any
pair of contexts c, c′ ∈ C, we have fw(r, c) = fw(r′, c′).

The counterpart of Fixed Weight then runs thus:

Principle 5.8 (Symmetry) A balancing operator Bo = (C, wC ,P) satisfies
Symmetry, Sym, just in case (i) (R, y) ∈ C if and only if ({(x, y, v) : (x, y, v) ∈
R}, y) ∈ C and (ii) wC is a symmetric weight system.

It is not difficult to verify that Symmetry entails Fixed Weight. What’s more,
it turns out that, with Symmetry in the background, every balancing operator
from Section 4 satisfies Neutrality. Here is a sample proof.

Proposition 5.9 Additive balancing (Definition 4.1) with Symmetry (Princi-
ple 5.8) satisfies Neutrality (Principle 3.6).

Proof. Consider some additive operator Bo = (C, wC ,P+) that satisfies
Symmetry. Consider an arbitrary context c = (R, y) for which we have
P+((R, y), wC) = v. Assume that (R′, y) ∈ C where R′ = {(x, y, v).
Without loss of generality, suppose that v = +. Then we know that∑
r∈pos(R,y) fw(r, (R, y)) = P > N =

∑
r∈neg(R,y) fw(r, (R, y)). Since wC is

symmetric, we know that fw((x, y, v), (R′, y)) = fw((x, y, v), (R, y)) for ev-
ery (x, y, v) ∈ R′. As a consequence,

∑
r∈pos(R′,y) fw(r, (R′, y)) = N < P =∑

r∈neg(R′,y) fw(r, (R′, y)), and, thus, P+((R, y), wC) = −. 2

6 Related work

In this section, we relate our extension of Knoks and van der Torre’s framework
to the original. First of all, it’s worth emphasizing that the original framework
with its notion of a detachment systems is more general. For instance, it does
not assume that the relation between contexts and values is functional, nor
makes any restrictions on the shape of the set of values V. Our notion of
balancing operators is grounded in some conceptual choices and so it is more
specific. Nevertheless, because of those conceptual choices it is also better
suited to capture the informal model of weighing reasons on weight scales from
the philosophical literature.

Knoks and van der Torre discuss two different classes of balancing operations
(which qualify as specific types of detachment systems): what they call anony-
mous and relational balancing operations. It wouldn’t be difficult to restate all
the particular anonymous operations that they define as balancing operators. 11

For instance, Knoks and van der Torre’s Simple Counting assigns a value to a
context of the form (R, y) by comparing the number of positive and negative

11This, again, speaks to the flexibility of the formal notion of a balancing operator.
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y-reasons in R. In the present framework, Simple Counting corresponds to a
special case of Additive Balancing, namely, one the underlying weight system of
which assigns the same weight to all reasons. (We leave the proof for the journal
version of this paper.) Other anonymous balancing operations are straightfor-
ward to redefine as operators. Knoks and van der Torre formulated several
principles that were satisfied by all of their anonymous balancing operations,
but that do not hold for every operator we defined in Section 4. This includes
Relevance and Polarity Monotony. As we saw, Relevance does not hold for all
of these operators unless Fixed Weight is also assumed, and Polarity Monotony
does not hold for Multiplicative Balancing even if Fixed Weight is assumed.
These observations illustrate that the notion of a balancing operator gives us
a grip on richer structures.

Turning to relational balancing operations, these are more difficult to re-
late to balancing operators, since relational operations come equipped with a
relation over reasons. It turns out to be possible to establish a connection be-
tween Maximizing Balancing Operators and one particular relational operation:
what Knoks and van der Torre call Decisive Reason. This operation assigns a
value to a context by checking the polarity of the “strongest” reason in it. It
shouldn’t be difficult to see that the “stronger than” relation can be mapped
to the greater than relation of numerical weights, and that, with this mapping,
Decisive Reasons has the form of Maximizing Balancing operators. (Again, we
leave the proof of this for the journal version.) To be in a position to explore
the connections between relational and numerical balancing, it would pay to
extend the notion of a balancing operator with a further component, namely, a
binary anti-symmetric relation over reasons (in contexts). With this, we would
be in a position to formulate principles that have to do with the relation—in ad-
dition to principles that have to do with weight systems and procedures—and
have a general framework for analyzing anonymous, numerical, and rational
balancing, as well as the connections between them.

7 Conclusion and future work

In this paper, we extended Knoks and van der Torre’s framework [8] to richer
structures in which reasons are associated with numerical weights. We started
by introducing the formal notions of weight systems, procedures, and balanc-
ing operators. Then we introduce six concrete classes of balancing operators,
presented a principle-based analysis of them, and explained how the results
presented here go beyond those of [8].

For future work, we plan to set up and explore the more general frame-
work we mentioned at the end of previous section, that is, a framework that
would unify numerical and relational balancing. It seems to be clear that what
we have done above shows that there is a rich variety of balancing operators
available for exploration and formal analysis. We also plan to explore how
our numerical balancing framework relates to multi-criteria decision-making
[7] and qualitative bipolar decision-making [4], as well as how it might be used
to model case-based reasoning.
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Abstract

In the digital era, users encounter an endless stream of recommendations. The devel-
opment of recommendation systems in AI has attracted extensive attention, yielding
a substantial body of literature. However, we have not encountered any logical sys-
tems for reasoning about recommendation systems, despite the immense amount of
reasoning involved in making recommendations. In this paper, we propose a new
recommendation logic (RL) to study the reasoning behind recommendations, em-
phasizing their basis in users’ revealed preferences. We explore the expressivity of
RL by introducing a new notion of bisimulation and translating RL into a 3-variable
fragment of a two-sorted first-order logic. We show that RL has the tree model prop-
erty and that its model-checking problem can be solved in polynomial time, for which
we propose an algorithm and prove its correctness. We believe that our work has the
potential to advance personalized recommendations.

Keywords: recommendation, preference, modal logic, model checking.

1 Introduction: logic for data-based recommendations

In our increasingly digital world, we are constantly bombarded with recom-
mendations generated by recommendation systems, from movie suggestions on
streaming services to product endorsements online. To date, significant atten-
tion has been focused on the algorithms that play a crucial role in filtering and
ranking these recommendations, resulting in an ever-growing body of litera-
ture. [15] is a widely cited reference that includes various major algorithms for
recommendations. More recent surveys can be found in [9] and [16]. This field
also intersects with data mining (see, for example, [6], [11]), aiming to discern
customers’ preferences.

Logical methods (e.g., fuzzy logic [8], [14], [16]) have been applied in the field
of recommendation systems. Some logical studies on the foundations of recom-
mendation systems have also been conducted, including logical formalization
of filtering conditions ([12], [2]) and knowledge-based recommendation systems
([4]). Nevertheless, we have not seen any logical system for reasoning about rec-
ommendations made by recommendation systems, despite the fact that making
recommendations based on data inherently involves substantial reasoning and

47



decision-making. This paper aims to fill the gap. Our approach is founded on
the explicit assumption that recommendations ought to be grounded in data
reflecting users’ choices. This leads us to embrace the theory of revealed prefer-
ence from economics (e.g., [17], [19]), which suggests that by analyzing users’
actions—such as interactions, selections, or purchases—we can infer their pref-
erences, even in the absence of explicit ratings. Our aim is to uncover the
underlying logic that connects the vast amount of data with the personalized
recommendations users receive, enabling us to reason about recommendation
algorithms. Such a logical characterization would equip us with an abstract
view of algorithms, and thus has the potential to provide insights on how to
enhance existing algorithms and inspire new ones.

Let us consider a realistic example:

Example 1.1 [Shopping on three platforms] Alice has been shopping on three
e-commerce platforms: Taobao (S1), Pinduoduo (S2), and JD.com (S3), as
shown in Figure 1. We denote statements such as “Alice bought a box of
copy paper,” “... a toner cartridge,” “... a printer,” and “... a stapler” by
propositional letters p1, p2, p3, and p4, respectively. Data point d1 shows that
in Jan. 2023, Alice bought a box of copy paper and a toner cartridge on S1. In
May 2023, she purchased boxes of copy paper on both S2 and S3; in addition,
she bought a printer along with a toner cartridge on S3 (possibly because her
old printer was broken), as shown by data points d2 and d3. Later in May, d4
recorded purchases of a box of copy paper and a stapler, not tracked by any
platforms. Finally, d5 indicates that in Sep. 2023, Alice bought boxes of copy
paper and toner cartridges on both S1 and S2.

1

d1 p1, p2

d2

p1

d3
p1, p2, p3

d4
p1, p4

d5p1, p2 d

S1

S2

S3

Fig. 1. Purchase on three platforms

Given Alice’s purchase data, what can a recommendation system running
at d learn about Alice’s preferences, and based on that, how can it make per-
sonalized recommendations?

Let us first see what we can observe or say at d:

1 Appendix A includes our remarks on the branching structure in Figure 1.
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(i) What Alice kept doing on every platform: p1 occurs in all data points
before d that are collected by some platform. Naturally, a recommendation
system should strongly recommend copy paper to her.

(ii) What Alice has done on every platform: On all platforms there is
a data point before d where p2 is true, indicating Alice bought toner
cartridges on each platform. This consistency constitutes a good reason to
recommend toner cartridges, though the basis for recommendation is not
as strong as that in case (i).

(iii) What Alice kept doing on some platform: p3 occurs in all data points
of platform S3, whereas ¬p3 holds at all data points of S1 and S2, indi-
cating potential platform preferences of Alice for printer purchases. Thus,
recommendations can be tailored based on data from specific platforms. 2

(iv) What Alice has done on some platform: This constitutes the minimal
requirement for recommendations based on direct evidence.

Note the combination of quantifiers on platforms and data points in the
above four notions. The implications of this combination will be studied in
this paper, where we will formalize those notions of recommendations.

It is noteworthy that the above example can be easily adapted into a typical
scenario of Content-Based Filtering ([15], [9], [16]), a major type of recommen-
dation models that recommends items similar to those selected by the user in
the past. The point is that propositional letters can also represent attributes
of items, so that we can reason about whether items with certain attributes
should be recommended to the user given the attributes of the items she pur-
chased. For instance, in the above example, we can use propositional letters
to denote attributes such as “Alice bought a printer-related item,” “... office
supplies,” “... an item in the price range of 200–500 yuan,” etc.

The paper is structured as follows: A new formal language and semantics
for recommendations are introduced in Sec. 2, which can be used to formalize
Example 1.1 and hence the typical reasoning behind Content-Based Filtering.
A novel bisimulation concept is discussed in Sec. 3.1. The standard translation
into two-sorted first-order logic is given in Sec. 3.2. A series of computational
results are shown in Sec. 4. Translations between our models and purely Kripke
or neighborhood models are studied in Sec. 5. The paper concludes in Sec. 6.

2 RL: language and semantics

In what follows, we will introduce a new recommendation logic (RL), and
present its language and semantics.

Definition 2.1 [Language] Let Prop be a countably infinite set of proposi-
tional letters. The RL-language L is defined as follows:

φ ::= p ∈ Prop | ⊥ | ¬φ | φ ∧ φ | [R]φ | ⟨R]φ
2 We are aware of the existing literature focusing on preferences or selection between different
social media platforms ([5], [7], [10], [20]), primarily from the perspective of algorithms.
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This language extends propositional logic with two new modalities, [R] and
⟨R]. Their duals will be written as ⟨R⟩ and [R⟩, respectively. 3

To give a precise interpretation of these operators, we define RL-models.

Definition 2.2 [Frames and models] An RL-frame is defined as a triple
(D, {Si}i∈I ,≺), where
(i) D is a set of data points.

(ii) {Si}i∈I is a non-empty set of data sequences 4 with each Si ⊆ D.

(iii) ≺ is a precedence relation between data points which is irreflexive and
transitive (i.e., is a strict partial order).

An RL-model is a tuple (D, {Si}i∈I ,≺, V ), where (D, {Si}i∈I ,≺) is an RL-
frame and V is a valuation that assigns to every propositional letter p the set
of data points V (p) ⊆ D at which p is true.

Fig. 1 in Example 1.1 illustrates an RL-model, which is built on data
points, each detailing the behavior of the user (e.g., clicked at what, bought
what, etc.). Some of these data points are collected by specific platforms,
whereas others might not be collected by any platform.

Definition 2.3 [Truth] The truth of an arbitrary formula φ ∈ L in an
RL-model M = (D, {Si}i∈I ,≺, V ) at d ∈ D is defined inductively as follows:

M, d |= p iff d ∈ V (p)
M, d |= ⊥ neveriff
M, d |= ¬φ iff M, d ⊭ φ

M, d |= φ ∧ ψ iff M, d |= φ and M, d |= ψ
M, d |= [R]φ for alliff i ∈ I and all d′ ∈ Si with d′ ≺ d, we have

M, d′ |= φ
M, d |= ⟨R]φ there existsiff i ∈ I s.t. for all d′ ∈ Si with d′ ≺ d,

we have M, d′ |= φ

The operators [R], [R⟩, ⟨R], and ⟨R⟩ formalize the four notions of recom-
mendations (i)–(iv) discussed in Sec. 1, respectively, representing varying rec-
ommendation strength or ranks. Specifically, [R] and ⟨R⟩ indicate strong and
weak recommendations, respectively. [R⟩ and ⟨R] denote intermediate strength,
focusing on cross-platform and platform-specific preferences, respectively.

Readers may find that our semantics is a mixture of Kripke semantics and
neighborhood semantics. A close comparison with these semantics will be ad-
dressed in Section 5, where one can see that RL-models are more intuitive and
compact than their purely Kripke or neighborhood counterparts.

3 The brackets in those operators have very intuitive meanings: left (right) brackets repre-
sent quantifiers on platforms (data points), and square (angle) brackets represent universal
(existential) quantifiers. E.g., [ denotes “on every platform.”
4 Or informally platforms, identifying data sequences with platforms that provide them.

   Towards  a  Logical  Approach  to  Recommendations

50



Finally, validity of an L-formula φ (notation |= φ) is defined as usual. To
help readers gain a better understanding of our semantics, we present some
interesting (in)validities.

Fact 2.4 The following formulas are valid and demonstrate the relative
strength of the recommendation operators.
|= [R]φ→ ⟨R]φ |= [R⟩φ→ ⟨R⟩φ

Fact 2.5 The following formulas are valid (invalid). 5

(K) |= [R](φ→ ψ)→ ([R]φ→ [R]ψ)
̸|= ⟨R](φ→ ψ)→ (⟨R]φ→ ⟨R]ψ)

(M) |= ⟨R](φ ∧ ψ)→ ⟨R]φ ∧ ⟨R]ψ
(C) ̸|= ⟨R]φ ∧ ⟨R]ψ → ⟨R](φ ∧ ψ)
(N) |= ⟨R]⊤
(4) |= [R]φ→ [R][R]φ

|= ⟨R]φ→ ⟨R]⟨R]φ
(Int) |= [R](φ→ ψ)→ (⟨R]φ→ ⟨R]ψ)

|= ⟨R]φ→ [R]⟨R]φ

3 Expressive power

The expressivity of L is studied in two respects: Sec. 3.1 explores it structurally
via bisimulation, while Sec. 3.2 compares L with first-order language, showing
that RL is equivalent to a 3-variable fragment of first-order logic through the
standard translation.

3.1 Bisimulation

In what follows, we propose a new notion of bisimulation for RL-models, which
captures the adequate notion of modal equivalence.

Definition 3.1 [Bisimulation] A bisimulation between two RL-models M =
(D, {Si}i∈I ,≺, V ) and M′ = (D′, {S′

i}i∈I′ ,≺′, V ′) is a non-empty relation Z ⊆
D ×D′ such that dZd′ iff

(i) (atomic condition): For each p ∈ Prop, d ∈ V (p) iff d′ ∈ V ′(p).

(ii) (forth condition):
(a) For each e ∈ ⋃

i∈I Si such that e ≺ d, there exists e′ ∈ ⋃
i∈I′ S

′
i such

that e′ ≺′ d′ and eZe′.
(b) For each Si, there exists S′

j such that for each e′ ∈ S′
j with e′ ≺′ d′,

there exists e ∈ Si such that e ≺ d and eZe′.

(iii) (back condition): Similar to the forth condition.

5 [13] shows that the logic K is equivalent to the smallest minimal modal logic E + (M) +
(C) + (N). In light of this and the following results, the invalidity of (C) for ⟨R] explains
the invalidity of (K) for ⟨R], and thus why ⟨R] is not a normal modal operator.
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When there is a bisimulation Z linking d ∈M and d′ ∈M′, we say that d
and d′ are bisimilar, notation Z : M, d ↔ M′, d′ or simply M, d ↔ M′, d′.

Basically, two points linked by a bisimulation share the same atomic infor-
mation (the atomic condition) and have corresponding transition possibilities
(the forth and back conditions). The forth and back conditions reflect the na-
ture of RL-models as a mixture of relational models and neighborhood models:
(a) comes from the standard bisimulation for relational semantics ([3], [18]),
whereas (b) is inspired by bisimulations for neighborhood semantics ([13], [18]).

We then show that bisimulations thus defined characterize modal equiva-
lence on RL-models in the following sense: bisimilarity implies modal equiva-
lence (Theorem 3.3), while the converse holds on image-finite RL-models (The-
orem 3.5).

Definition 3.2 [Modal equivalence] Given twoRL-modelsM=(D, {Si}i∈I ,≺,
V ) and M′ = (D′, {S′

i}i∈I′ ,≺′, V ′), d ∈ D, and d′ ∈ D′, we say M, d and M′, d′

are modally equivalent (notation M, d ≡M′, d′), iff

for each φ ∈ L, M, d |= φ iff M′, d′ |= φ

Theorem 3.3 Let M = (D, {Si}i∈I ,≺, V ) and M′ = (D′, {S′
i}i∈I′ ,≺′, V ′)

be RL-models. For each d ∈ D and d′ ∈ D′, Z : M, d ↔ M′, d′ implies
M, d ≡M′, d′.

Proof. We refer to the proof in the Appendix. 2

As in relational semantics, the other direction does not hold generally, but
for image-finite RL-models, bisimilarity does imply modal equivalence.

Definition 3.4 [Image-finiteness] Given a relation R ⊆ X×Y and x ∈ X, the
image R[x] of x under R is the set {y ∈ Y : xRy}.

An RL-model M = (D, {Si}i∈I ,≺, V ) is image-finite, iff for each d ∈ D,
≺−1 [d] ∩⋃

i∈I Si and I are finite.

Theorem 3.5 Let M = (D, {Si}i∈I ,≺, V ) and M′ = (D′, {S′
i}i∈I′ ,≺′, V ′) be

image-finite RL-models. For each d ∈ D and d′ ∈ D′, M, d ≡ M′, d′ implies
M, d ↔ M′, d′.

Proof. See the proof in the Appendix. 2

The standard translation3.2

We are about to show that every L-formula is equivalent to a two-sorted first-
order formula with at most three variables. We first define the correspondence
language into which we will translate L-formulas.

Definition 3.6 [Correspondence language] The correspondence language Lfo

is a two-sorted first-order language whose two sorts are d and s, intended to rep-
resent data points and data sequences, respectively. d consists of two variables
x and y, while s consists of only one variable s.

The signature of Lfo contains unary predicates P0, P1, . . . of sort d for each
propositional letter p0, p1, · · · ∈ Prop, a binary relation symbol R relating two
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elements of sort d, and a binary relation symbol E relating elements of sort d
to elements of sort s. The intended interpretation of xRy is “x precedes y,”
and the intended interpretation of xEs is “x is an element of s.”
Lfo is generated by the following grammar:

x = y | Pix | xRx | xEs | ¬φ | φ ∧ φ | ∃xφ | ∃sφ

We then define the first-order translation of RL-models on which we inter-
pret Lfo-formulas.

Definition 3.7 [First-order translation of RL-models] Suppose that M =
(D, {Si}i∈I ,≺, V ) is an RL-model. The first-order translation of M is the
first-order structure M∗ = (W, {Pi}i∈N, R,E) where:

(i) W =W d ∪W s with W d = D, W s = {Si}i∈I .
(ii) Pi = V (pi) for each pi ∈ Prop.

(iii) R = {(d′, d) : d′, d ∈W d and d′ ≺ d}.
(iv) E = {(d, Si) : d ∈W d, Si ∈W s, and d ∈ Si}.

Finally, we define the standard translation of L into Lfo.

Definition 3.8 (Standard translation) The standard translation of L consists
of STx : L → Lfo and STy : L → Lfo defined by mutual induction:

STx(p) = Px

STx(⊥) = x ̸= x

STx(¬φ) = ¬STx(φ)
STx(φ ∧ ψ) = STx(φ) ∧ STx(ψ)
STx([R]φ) = ∀s∀y(yEs ∧ yRx→ STy(φ))

STx(⟨R]φ) = ∃s∀y(yEs ∧ yRx→ STy(φ))

STy(p) = Py

STy(⊥) = y ̸= y

STy(¬φ) = ¬STy(φ)
STy(φ ∧ ψ) = STy(φ) ∧ STy(ψ)
STy([R]φ) = ∀s∀x(xEs ∧ xRy → STx(φ))

STy(⟨R]φ) = ∃s∀x(xEs ∧ xRy → STx(φ))

We now prove the following theorem, which says that every L-formula is
equivalent to an Lfo-formula containing at most three variables.

Theorem 3.9 Let M = (D, {Si}i∈I ,≺, V ) be an RL-model and φ ∈ L. Then

(i) For each d ∈ D, M, d |= φ iff M∗ |= STx(φ)[d] iff M∗ |= STy(φ)[d].

(ii) M |= φ iff M∗ |= ∀xSTx(φ).
Proof. Again, we refer to the proof in the Appendix. 2
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4 Computational properties

In this section, we show that RL has two nice computational properties: it
enjoys the tree model property (Sec. 4.1), which is usually a positive indicator
for the computational behavior of a logic; its model-checking problem can be
solved in polynomial time (Sec. 4.2), paving the way for its applications in
recommendation systems.

4.1 Tree model property

We first explain what the tree model property is.

Definition 4.1 [Tree-like model] (T,R) is a (transitive) tree, iff

(i) R ⊆ T × T .
(ii) There exists a root r ∈ T such that Rrt for each t ∈ T with t ̸= r.

(iii) For each t ∈ T , {s ∈ T : Rst} is finite and linearly ordered by R.

An RL-model M = (D, {Si}i∈I ,≺, V ) is tree-like iff (D,≺−1) is a tree.

Theorem 4.2 (Tree model property) RL has the tree model property: any
RL-satisfiable φ ∈ L is satisfiable in a tree-like RL-model.

We prove the above theorem by a classical method called unraveling.

Definition 4.3 [Unraveling] Let σ1 + σ2 denote the concatenation of two se-
quences σ1 and σ2, and let (σ)0 denote the first term of a sequence σ.

Given an RL-model M = (D, {Si}i∈I ,≺, V ) and d ∈ D, the unraveling of
M around d is the RL-model Mu = (Du, {Sui }i∈I ,≺u, V u) where:
(i) Du is the set of all finite sequences (en, ..., e1, d) such that en ≺ en−1 ≺
· · · ≺ e1 ≺ d.

(ii) For each i ∈ I, Sui = {σ ∈ Du : (σ)0 ∈ Si}.
(iii) ≺u= {(σ′, σ) ∈ Du ×Du : there exists d ∈ D such that σ′ = (d) + σ}.
(iv) For each p ∈ Prop, σ ∈ V u(p) iff (σ)0 ∈ V (p).

Given a binary relation R ⊆ S×S, the transitive closure of R is the smallest
transitive relation on S that contains R.

It is easy to see that the following fact holds:

Fact 4.4 Given an RL-model M = (D, {Si}i∈I ,≺, V ) and d ∈ D, the transi-
tive closure of the unraveling of M around d is a tree-like RL-model.

Finally, a proof of the tree model property of RL (Theorem 4.2) in virtue
of unraveling can be found in the Appendix.

4.2 Time complexity of model checking

Definition 4.5 [Model-checking problem] The RL model-checking problem is
as follows: given a finite RL-model M = (D, {Si}i∈I ,≺, V ), d ∈ D, and φ ∈ L,
determine whether M, d |= φ.

Application: It is not difficult to see howRLmodel checking can be useful.
For instance, consider again Example 1.1. Let M denote the model illustrated
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by Figure 1. A recommendation system can determine by RL model checking
which of [R]p, ⟨R]p, [R⟩p, and ⟨R⟩p (for p ∈ {p1, p2, p3, p4}) hold at M, d,
and determine its recommendation behavior (e.g., whether to recommend, the
priority or rank of recommendation) accordingly.

As usual, we show that RL model checking can be done by first recur-
sively calculating the satisfaction set for each subformula of φ by a bottom-up
traversal over the parse tree of φ, then checking whether d belongs to the satis-
faction set of φ (see [1]). Furthermore, the entire procedure can be performed
in polynomial time, as indicated by the following theorem.

Theorem 4.6 The RL model-checking problem can be solved in

O(|I| · (|D|+ | ≺ |) · |φ|)

where |φ| is defined inductively as follows:

(i) |p| = 1 for each p ∈ Prop.

(ii) |⊥| = 1.

(iii) | ⋆ ψ| = |ψ|+ 1 for each unary operator ⋆.

(iv) |ψ1 ◦ ψ2| = |ψ1|+ |ψ2|+ 1 for each binary operator ◦.

In Sec. 4.2.1, we give a model-checking algorithm for RL and prove its
correctness; in Sec. 4.2.2, we calculate the time complexity of this algorithm,
which completes the proof of the above theorem.

4.2.1 A model-checking algorithm

The following concept is useful in developing an efficient model-checking algo-
rithm.

Definition 4.7 [Satisfaction set] Given an RL-model M = (D, {Si}i∈I ,≺, V )
and φ ∈ L, the satisfaction set of φ in M is defined as

SatM(φ) = {d ∈ D : M, d |= φ}

A model-checking algorithm is given by the function Check in Algorithm
1, which calls the function Sat to compute satisfaction sets. The correctness
of those two functions is guaranteed by the following lemma.

Lemma 4.8 For each finite RL-model M = (W, {Si}i∈D,≺, V ), d ∈ D and
φ ∈ L,
(i) SatM(φ) = Sat(M, φ).

(ii) M, d |= φ iff Check(M, d, φ).

Proof. We refer to the proof in the Appendix. 2

Time complexity of Algorithm4.2.2 1

In the Appendix, we prove that the time complexity of Algorithm 1 is in O(|I| ·
(|D|+ | ≺ |) · |φ|) (Theorem 4.6).
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Towards a Logical Approach to Recommendations

Algorithm 1. An RL model-checking algorithm

Require: Finite RL-model M = (D, {Si}i∈I ,≺, V ), d ∈ D, and φ ∈ L
1: function Sat(M, φ) ▷ Computes SatM(φ)
2: if φ ∈ Prop then
3: return V (φ)
4: else if φ = ⊥ then
5: return ∅
6: else if φ = ¬ψ then
7: return D\Sat(M, ψ)
8: else if φ = ψ1 ∧ ψ2 then
9: return Sat(M, ψ1)∩Sat(M, ψ2)

10: else if φ = ⟨R⟩ψ then
11: S ← ∅
12: for all i ∈ I do
13: S ← S ∪ Si
14: end for
15: T ← ∅
16: for all d ∈ Sat(M, ψ)∩S do
17: T ← T∪ ≺ [d]
18: end for
19: return T
20: else if φ = [R⟩ψ then
21: G← Sat(M, ψ)
22: T ← D
23: for all i ∈ I do
24: E ← ∅
25: for all d ∈ G ∩ Si do
26: E ← E∪ ≺ [d]
27: end for
28: T ← T ∩ E
29: end for
30: return T
31: end if
32: end function
33: function Check(M, d, φ) ▷ Checks if M, d |= φ
34: return d ∈Sat(M, φ)
35: end function

5 Comparison

As we commented several times, RL-models are a mixture of Kripke models
and neighborhood models. We will elaborate on the connections between RL-
models and purely Kripke or neighborhood models. Readers will find RL-
models more intuitive and compact than their purely Kripke or neighborhood
counterparts.
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5.1 Equivalence between RL-models and Kripke RL-models

In this part, we show the equivalence between RL-models and their purely
Kripke counterparts – Kripke RL-models, in the sense that each RL-model
can be translated into a modally equivalent Kripke RL-model, and vice versa.

Definition 5.1 [Kripke RL-model] A Kripke RL-model is defined as a triple
(D, {≺i}i∈I∪{I}, V ), where

(i) I ̸= ∅.
(ii) ≺i⊆ D ×D for each i ∈ I ∪ {I}.
(iii)

⋃
i∈I∪{I} ≺i is irreflexive and transitive.

(iv) Forward consistency : for each d ∈ D and i, j ∈ I ∪ {I}, if ≺i [d] ̸= ∅ and
≺j [d] ̸= ∅, then ≺i [d] =≺j [d].

(v) V : Prop→ P(D) is a valuation.

Definition 5.2 [Truth] The truth of an arbitrary formula φ ∈ L in a Kripke
RL-model K = (D, {≺i}i∈I∪{I}, V ) at d ∈ D is defined inductively as follows:

K, d |= p iff d ∈ V (p)
K, d |= ⊥ neveriff
K, d |= ¬φ iff M, d ⊭ φ

K, d |= φ ∧ ψ iff K, d |= φ and K, d |= ψ
K, d |= [R]φ for alliff i ∈ I and all d′ ∈ D with d′ ≺i d, we have

K, d′ |= φ
K, d |= ⟨R]φ there existsiff i ∈ I such that for all d′ ∈ D with

d′ ≺i d, we have K, d′ |= φ

Fact 5.3 Let M = (D, {Si}i∈I ,≺, V ) be an RL-model, and KM = (D, {≺i
}i∈I∪{I}, V ), where

(i) For each i ∈ I,
≺i= {(d′, d) ∈≺: d′ ∈ Si}

(ii) ≺I= {(d′, d) ∈≺: d′ ̸∈
⋃
i∈I Si}.

KM is a Kripke RL-model, called the Kripke translation of M.

Proof. A proof is given in the Appendix. 2

Theorem 5.4 Let M = (D, {Si}i∈I ,≺, V ) be an RL-model, and KM be the
Kripke translation of M. For each d ∈ D, M, d ≡ KM , d.

Proof. By induction on φ. 2

We then introduce the translation in the other direction.

Definition 5.5 [RL-translation of Kripke RL-models] Given a Kripke RL-
model K = (D, {≺i}i∈I∪{I}, V ), the RL-translation of K is the RL-model
MK = (D, {Si}i∈I ,≺, V ), where:

(i) Si = {d :≺i [d] ̸= ∅} for each i ∈ I.
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(ii) ≺= ⋃
i∈I∪{I} ≺i.

Theorem 5.6 Let K = (D, {≺i}i∈I∪{I}, V ) be a Kripke RL-model, and MK =
(D, {Si}i∈I ,≺, V ) be the RL-translation of K. For each d ∈ D, K, d |= φ iff
MK , d |= φ.

Proof. See the proof in the Appendix. 2

Translation into neighborhood models5.2

Readers familiar with neighborhood semantics may have already discovered
that operators in L can be interpreted on neighborhood models in a natural way,
and that RL-models can be translated into modally equivalent neighborhood
models. Details can be found in Appendix C.

6 Conclusions and future work

This paper represents our first attempt to study the reasoning and mecha-
nisms behind recommendation systems and in particular Content-Based Fil-
tering models. To this end, a new logic has been proposed. We have studied
its expressivity by introducing a new notion of bisimulation and translating
it into a 3-variable fragment of two-sorted first-order logic. We have explored
its computational properties and proved that RL has the tree model property,
and its model-checking problem can be solved in polynomial time, for which
we proposed an algorithm and proved its correctness. Finally, we also included
a comparison between our models and purely Kripke or neighborhood models.

For future work, on the technical side, we want to see whether a com-
plete axiomatization for RL is possible, and we are interested in exploring the
complexity of its SAT problem. Inspired by the application, our models have
distinct features compared to temporal models, so we want to compare them in
detail. Revisiting the reasoning behind recommendations, numerous new chal-
lenges await. For instance, we would like to incorporate additional elements
into our logic, allowing it to distinguish between durable goods (e.g., printers)
and non-durable goods (e.g., copy paper), and reason about the periodicity of
purchases, groups of agents, their interests and similarities, etc. This would
connect our logical work with widely used recommendation algorithms, such as
Collaborative Filtering ([15], [9], [16]).
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Appendix

A Remarks on Example 1.1

The branching structure in Figure 1 does not represent the branching of the un-
derlying temporal precedence relation, but is used to model varying shopping
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behaviors of Alice across different platforms. The arrows do not completely
model the temporal precedence relation, and the extent to which they do so is
in general up to the modeler and may be subject to realistic restrictions. For
instance, assume that in this example, the platforms only report to a recom-
mendation system running at d the months when certain shopping behaviors
are recorded, then the recommendation system would be ignorant of the tem-
poral precedence relation between d2 and d3, which are both associated with
May 2023.

B Proofs

Proof. [Theorem 3.3] By induction on φ.

• The atomic and boolean cases are trivial.

• φ = [R]ψ. Assume M, d |= φ. Let e′ ∈ ⋃
i∈I′ S

′
i such that e′ ≺′ d′. By (a)

of the back condition, there exists e ∈ ⋃
i∈I Si such that e ≺ d and eZe′. By

the assumption, M, e |= ψ. By the induction hypothesis, M′, e′ |= ψ. Hence
M′, d′ |= φ. The other direction can be proven analogously.

• φ = ⟨R]ψ. Assume M, d |= φ. Then there exists Si such that

for all e ∈ Si with e ≺ d, we have M, e |= φ (B.1)

By (b) of the forth condition, there exists S′
j such that

for each e′ ∈ S′
j with e

′ ≺′ d′, there exists e ∈ Si such that e ≺ d and eZe′

(B.2)

Let e′ ∈ S′
j with e′ ≺′ d′. By (B.2), there exists e ∈ Si such that e ≺ d and

eZe′. By (B.1), M, e |= ψ. By the induction hypothesis, M′, e′ |= ψ. Hence
M′, d′ |= φ. The other direction can be proven analogously.

2

Proof. [Theorem 3.5] It suffices to show that ≡: M, d ↔ M′, d′.
(i). The atomic condition is immediate.
(ii).(a). Suppose M, d ≡ M′, d′, e ∈ ⋃

i∈I Si, and e ≺ d. Assume for the
sake of contradiction that there is no e′ ∈ ⋃

i∈I′ S
′
i such that e′ ≺′ d′ and

M, e ≡ M′, e′. Since M′ is image-finite, E′ =≺′−1 [d′] ∩⋃
i∈I′ S

′
i is finite, say

E′ = {e′1, . . . , e′n}. By the assumption, for each e′i ∈ E′ there exists φi ∈ L such
that M, e |= φi but M′, e′i ̸|= φi. Then M, d |= ⟨R⟩∧1≤i≤n φi but M′, d′ ̸|=
⟨R⟩∧1≤i≤n φi, contradicting M, d ≡M′, d′.

(ii).(b). Suppose M, d ≡ M′, d′ and l ∈ I. Assume for the sake of con-
tradiction that there is no S′

j such that for each e′ ∈ S′
j with e′ ≺′ d′, there

exists e ∈ Sl such that e ≺ d and M, e ≡ M′, e′. Since M′ and M are image-
finite, {S′

i}i∈I′ and ≺−1 [d] ∩ Sl are finite, say {S′
i}i∈I′ = {T ′

1, . . . , T
′
k} and

≺−1 [d] ∩ Sl = {e1, . . . , en}. By the assumption, for each T ′
i , there exists

e′i ∈ T ′
i such that M, ej ̸≡ M′, e′i for each ej . Then for each 1 ≤ i ≤ k and
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1 ≤ j ≤ n, there exists φij ∈ L such that M, ej |= φij but M
′, e′i ̸|= φij . Let

φ =
∨

1≤j≤n

∧

1≤i≤k
φij

One can show that M, ej |= φ for each ej , and M′, e′i ̸|= φ for each e′i. Hence
M, d |= ⟨R]φ but M′, d′ ̸|= ⟨R]φ, contradicting M, d ≡M′, d′.

(iii). Similar to (ii). 2

Proof. [Theorem 3.9] (i) By induction on φ.

• The atomic and boolean cases are trivial.

• φ = [R]ψ. We have

M, d |= [R]ψ

⇐⇒ for all i ∈ I and all d′ ∈ Si with d′ ≺ d, we have M, d′ |= ψ

⇐⇒ for all i ∈ I and all d′ ∈ Si with d′ ≺ d, we have M∗ |= STy(ψ)[d
′]

(Induction Hypothesis)

⇐⇒M∗ |= ∀s∀y(yEs ∧ yRx→ STy(ψ))[d]

⇐⇒M∗ |= STx(φ)[d]

Similarly, one can show that M, d |= [R]ψ iff M∗ |= STy(φ)[d].

• φ = ⟨R]ψ. Similar to the above case.

(ii) follows directly from (i).
2

Proof. [Theorem 4.2] Assume φ is satisfied in an RL-model M =
(D, {Si}i∈I ,≺, V ) at point d ∈ D. Let Md = (Dd, {Sdi }i∈I ,≺d, V d) be the
transitive closure of the unraveling of M around d. Let

Z = {(e, σ) ∈ D ×Dd : (σ)0 = e}

By Theorem 3.3, it suffices to show that Z : M, d ↔ Md, (d).
(i) The atomic condition is immediate.
(ii).(a) Suppose e ∈ ⋃

i∈I Si such that e ≺ d. Then (e, d) ∈ Dd, (e, d) ≺d
(d), eZ(e, d), and there exists i ∈ I such that e ∈ Si. Then (e, d) ∈ Sdi , so
(e, d) ∈ ⋃

i∈I S
d
i .

(ii).(b) Suppose i ∈ I and σ = (en, . . . , e1, d) ∈ Sdi such that σ ≺d (d).
Then en ∈ Si, enZσ, and en ≺ en−1 ≺ · · · ≺ e1 ≺ d. By the transitivity of ≺,
we have en ≺ d.

(iii).(a) Suppose σ = (en, . . . , e1, d) ∈
⋃
i∈I S

d
i such that σ ≺d (d). Then

there exists i ∈ I such that σ ∈ Sdi , then en ∈ Si. Similar to (ii).(b), it is easy
to see that en ≺ d.

(iii).(b) Suppose i ∈ I and e ∈ Si such that e ≺ d. Then (e, d) ∈ Sdi ,
(e, d) ≺d (d), and eZ(e, d). 2

Proof. [Lemma 4.8](ii) is an easy consequence of (i). We show (i) by induction
on φ.
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• The atomic and boolean cases are trivial.

• φ = ⟨R⟩ψ. It is easy to see that after executing the loop on lines 12-14
of Algorithm 1, S =

⋃
i∈I Si, and after executing the loop on lines 16-18,

T =
⋃
d∈Sat(M,ψ)∩S ≺ [d] =

⋃
d∈Sat(M,ψ)∩⋃

i∈I Si
≺ [d]. By the induction

hypothesis,

T =
⋃

d∈SatM(ψ)∩⋃
i∈I Si

≺ [d]

Obviously Sat(M, φ) = T = SatM(φ).

• φ = [R⟩ψ. It is easy to see that after executing the inner loop on lines 25-27,
E =

⋃
d∈Sat(M,ψ)∩Si

≺ [d], so after executing the outer loop on lines 23-29,

T =
⋂
i∈I

⋃
d∈Sat(M,ψ)∩Si

≺ [d]. By the induction hypothesis,

T =
⋂

i∈I

⋃

d∈SatM(ψ)∩Si

≺ [d]

Obviously Sat(M, φ) = T = SatM(φ).
2

Proof. [Theorem 4.6] By Lemma 4.8, it suffices to show that the time com-
plexity of the function Check in Algorithm 1 is in O(|I| · (|D| + | ≺ |) · |φ|).
Let M = (D, {Si}i∈I , ≺, V ) be a finite RL-model, d ∈ D, and φ ∈ L.
Claim. For each φ ∈ L, if Sat(M, ψ) has been computed for each subformula
ψ of φ, then Sat(M, φ) can be done in O(|I| · (|D|+ | ≺ |)).
Proof of the Claim. When φ = ⊥, Sat(M, φ) can finish in O(1). When
φ ∈ Prop or φ = ¬ψ or φ = ψ1 ∧ ψ2, Sat(M, φ) can finish in O(|D|).

Suppose φ = ⟨R⟩ψ. The first loop on lines 12-14 can be done in O(|I| · |D|).
The second loop on lines 16-18 first requires O(|D|) time to compute Sat(M,
ψ)∩S, then visits each edge in ≺ at most once, which requires O(| ≺ |) time.
Therefore Sat(M, φ) can be done in O(|I| · |D|+ | ≺ |).

Suppose φ = [R⟩ψ. Line 22 can be done in O(|D|). The inner loop on lines
25-27 first requires O(|D|) time to compute G∩Si, then visits each edge in ≺ at
most once, which requires O(| ≺ |) time. Line 28 takes O(|D|) time. Therefore
both the outer loop and Sat(M, φ) can be done in O(|I| · (|D|+ | ≺ |)).

Hence Sat(M, φ) can be done in O(|I| · (|D|+ | ≺ |)).
□(of the Claim)

Note that Sat is a bottom-up traversal of the parse tree of φ, starting from
the leaves and finishing at the root. By the Claim, visiting each node of the
parse tree of φ takes O(|I| · (|D|+ | ≺ |)) time, and there are at most |φ| such
nodes, so the time complexity of Sat and thus Check is in O(|I| · (|D| + | ≺
|) · |φ|). 2

Proof. [Fact 5.3] Irreflexivity of
⋃
i∈I∪{I} ≺i: Let d ∈ D and i ∈ I ∪{I}, then

d ̸≺ d by the irreflexivity of ≺, then d ̸≺i d, so (d, d) ̸∈ ⋃
i∈I∪{I} ≺i.
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Transitivity of
⋃
i∈I∪{I} ≺i: Suppose (d1, d2), (d2, d3) ∈

⋃
i∈I∪{I} ≺i. Then

there exist i, j ∈ I ∪ {I} such that d1 ≺i d2 and d2 ≺j d3. Then d1 ≺ d2 and
d2 ≺ d3. By the transitivity of ≺, d1 ≺ d3, so d1 ≺i d3. Hence (d1, d3) ∈⋃
i∈I∪{I} ≺i.
Forward consistency: Suppose ≺i [d] ̸= ∅ and ≺j [d] ̸= ∅. It cannot be the

case where exactly one of i of j is I, for that in that case we would have both
d ∈ ⋃

i∈I Si and d ̸∈
⋃
i∈I Si, which is not possible. Then there are two cases:

(i) i = j. Obviously ≺i [d] =≺j [d].
(ii) i ̸= j, and neither i nor j is I. Then d ∈ Si and d ∈ Sj . So d′ ∈≺i [d] iff

d ≺ d′ iff d′ ∈≺j [d].
2

Proof. [Theorem 5.6]
Claim. For each d, d′ ∈ D and i ∈ I, we have d′ ≺i d iff d′ ∈ Si and d′ ≺ d.
Proof of the Claim. Suppose d′ ∈ Si and d′ ≺ d. Assume d′ ̸≺i d. Then
there exists j ∈ I ∪ {I} such that j ̸= i and d′ ≺j d. Since ≺i [d′] ̸= ∅ and
≺j [d′] ̸= ∅, by the forward consistency of K, we have ≺i [d′] =≺j [d′], so
d′ ≺i d, contradicting d′ ̸≺i d. Hence d′ ≺i d.

The other direction is straightforward.

□(of the Claim)

By induction on φ.

• The atomic and boolean cases are trivial.

• φ = [R]ψ. We have

K, d |= φ

⇐⇒ for all i ∈ I and all d′ ∈ D with d′ ≺i d, we have K, d′ |= ψ

⇐⇒ for all i ∈ I and all d′ ∈ D with d′ ≺i d, we have MK , d′ |= ψ

(Induction Hypothesis)

⇐⇒ for all i ∈ I and all d′ ∈ Si with d′ ≺ d, we have MK , d′ |= ψ

(Claim)

⇐⇒MK , d |= φ

• φ = ⟨R]ψ. We have

K, d |= ψ

⇐⇒ there exists i ∈ I such that for all d′ ∈ D with d′ ≺i d, K, d′ |= ψ

⇐⇒ there exists i ∈ I such that for all d′ ∈ D with d′ ≺i d, MK , d′ |= ψ

(Induction Hypothesis)

⇐⇒ there exists i ∈ I such that for all d′ ∈ Si with d′ ≺ d, MK , d′ |= ψ

(Claim)

⇐⇒MK , d |= φ
2
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C Neighborhood RL-models

We first define the neighborhood counterpart of RL-models and truth on those
neighborhood models.

Definition C.1 [Neighborhood RL-model] A neighborhood RL-model is de-
fined as a triple (D,N, V ), where

(i) N : D → P(P(D)) is a neighborhood function.

(ii) V : Prop→ P(D) is a valuation.

Definition C.2 [Truth] The truth of an arbitrary formula φ ∈ L in a
neighborhood RL-model N = (D,N, V ) at d ∈ D is defined inductively as
follows:

N, d |= p iff d ∈ V (p)
N, d |= ⊥ neveriff
N, d |= ¬φ iff N, d ⊭ φ

N, d |= φ ∧ ψ iff N, d |= φ and N, d |= ψ
N, d |= [R]φ for alliff X ∈ N(d) and all d′ ∈ X, we have N, d′ |= φ
N, d |= ⟨R]φ there existsiff X ∈ N(d) such that for all d′ ∈ X, we

have N, d′ |= φ

We then show how to translate an RL-model into a neighborhood RL-
model without affecting truth of L-formulas.

Definition C.3 [Neighborhood translation of RL-models] Given an RL-
model M = (D, {Si}i∈I ,≺, V ), the neighborhood translation of M is a neigh-
borhood RL-model NM = (D,N, V ), where N(d) = {Si∩ ≺−1 [d] : i ∈ I} for
each d ∈ D.

Theorem C.4 Let M = (D, {Si}i∈I ,≺, V ) be an RL-model, and NM be the
neighborhood translation of M. For each d ∈ D, M, d ≡ NM , d.

Proof. By induction on φ.

• The atomic and boolean cases are trivial.

• φ = [R]ψ. We have

M, d |= φ

⇐⇒ for all i ∈ I and all d′ ∈ Si∩ ≺−1 [d], we have M, d′ |= ψ

⇐⇒ for all i ∈ I and all d′ ∈ Si∩ ≺−1 [d], we have NM , d′ |= ψ

(Induction Hypothesis)

⇐⇒ for all X ∈ N(d) and all d′ ∈ X, we have NM , d′ |= ψ

⇐⇒ NM , d |= φ

• φ = ⟨R]ψ. We have

M, d |= φ

⇐⇒ there is i ∈ I such that for all d′ ∈ Si∩ ≺−1 [d], we have M, d′ |= ψ
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⇐⇒ there is i ∈ I such that for all d′ ∈ Si∩ ≺−1 [d], we have NM , d′ |= ψ

(Induction Hypothesis)

⇐⇒ there is X ∈ N(d) such that for all d′ ∈ X, we have NM , d′ |= ψ

⇐⇒ NM , d |= φ
2
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Abstract

In this paper, we explore the necessary reasoning conditions for outputting certain
targeted actions in a structured argumentation system in the context of law. Based
on a system that has been developed to combine legal ontology with a structured
argumentation framework, we adapt the norms in the law regarding the actions of
AI products by means of this feature. The adjustment of norms is realised under
non-monotonic reasoning through argumentation theory, and dynamic changes in
preference order among legal principles are also reflected.

Keywords: Enforcement, Structured argumentation, Practical reasoning.

1 Introduction

Structured argumentation has shown powerful ability in non-monotonic rea-
soning and dealing with conflicts over the last few years. How to explore the
interpretability of reasoning results in different inconsistent contexts has been
a direction of great concern in recent years [10,12]. Among them, research
incorporating structured argumentation has become increasingly well-studied.
These studies focus on how to get results from inconsistent reasoning conditions
and have many combinations with practical reasoning, e.g., decision-making.
Reasoning, however, is not limited to the process of moving from conditions to
outcomes. Analysing the corresponding reasoning structures through a given
goal or outcome is also an important form of reasoning in life. For example,
the formulation of social rules embedding complex principles of reasoning often
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66



starts with a predetermined goal. It is, therefore, natural to notice the opposite
direction: how can the results of reasoning be used to determine the necessary
inferential conditions for arriving at it?

This is particularly evident in practical reasoning, especially legal reason-
ing. If the law is understood as a set of social rules providing basic guidance for
the behavior of citizens, the first step in the formulation of these rules is a clear
legislative intention. At a macro level, the intention of the law may be human
rights or philosophical concepts such as freedom and equality. The same is true
for more specific legal norms. For example, norms about direction of travel,
speed, and driving style are established because the law wants vehicles to be
driven without collision. It can be seen that legal norms are developed on the
basis of common-sense rules, such as the rules of physics. However, the connec-
tions between legal norms and the principles of reasoning are designed around
legislative intention. Building reasoning rules around legislative intention is
likewise one of the reasons why legal norms need to be constantly adapted.
One such situation is when existing legal rules no longer fulfill the same legal
intention in new situations. For example, the law prohibits drivers from using
communication devices or screen devices while driving because it distracts the
driver’s attention from the road conditions. In the case of autonomous driving,
however, the use of communication and visualisation devices is exactly how the
driving system gets the road conditions.

In the other case, which is the main focus of this paper, the intention itself is
changed. In order not to cause confusion, it should be made clear at the outset
that the intention in this paper is only with respect to the specific action that
the rule seeks to ensure, such as ensuring that a vehicle stops in front of people
and not with respect to abstract concepts such as safety or justice. Even at a
level very close to the application, the update of the law’s guidance on actions
is not simply a matter of modifying the ultimate direction of a rule but a more
profound renewal of the relationships between the rules and the corresponding
legal principles in light of the new intentions. This is not just because the
legal system is so complex that a single change can have a knock-on effect, so
more work is required to ensure self-consistency. It is also because Dworkin’s
theory of the “one right answer” [21] rarely occurs in practical reasoning in
the field of law. For the most part, the application of the legal rules is subject
to a process of interpretation, i.e., the selection of the applicable rules on the
basis of conflicting or uncertain elements of the case and, more importantly,
the priority of the legal principles. Therefore, the update of rules of legal
reasoning according to the new intentions must also capture the characteristics
of such non-monotonic reasoning and reflect changes in the preferences of legal
principles.

We use the following example to exemplify the above notions and will also
use it later in the paper to show how the findings can be useful in similar
contexts.

Example 1.1 Under existing traffic regulations, when people and goods are
involved in a traffic accident or other dangerous situation at the same time, the
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driver’s life will be protected as a priority. This is, in fact, underpinned by a
legal principle that contains a message of preference:

Driver safety has priority over cargo safety
The action that the above legal principle seeks to ensure is that the safety of

the driver must be protected in the event of danger. However, the advent of au-
tonomous driving may change this intention. This is because in an autonomous
driving situation, the driver is no longer a human being but some system or
the car itself, which may not be as important as their cargo. In a more extreme
scenario, we could envisage a self-driving car with a dog in it - who should we
protect in danger? Based on the legal principle above, the car would make the
decision to sacrifice the dog for its own safety. This is because it fits the notion
of a driver, and in the legal context, pets or livestock are property, a type of
cargo. But it is obvious that there will be a significant number of people who do
not want the car to make this choice because it seems that at this moment, the
legal principle that should be applied instead of the previous one is:

Lives have priority over inanimate objects
Therefore, in this case, the action that we have to ensure has changed to

the safety of lives, or important cargoes must be protected. In this case, it is
the safety of the dog must be protected. Accordingly, the rules of law need to be
modified.

As we can see from this example, the revision of legal rules in a new situa-
tion is a process in which new elements interact with the intention of the law.
The process begins with the ability to express information about the new envi-
ronment; in this case, the changes brought about by the new design elements,
such as the driver, do not fit in the human concept anymore. This is followed
by a change in the action that the legal reasoning seeks to secure in light of
the corresponding change. Moreover, in order to realise this new legal intent,
the applicability of the legal principles in that situation is determined by a
reordering of preferences. Through this, it is ultimately determined what the
new rules and the relationship between them should be. In this case, perhaps
one option would be to stipulate that in the case of autonomous driving, the
action to protect the dog in the event of danger always defeats the action to
protect the driver should be enforced.

In order to explore how to use structured argumentation systems to help
implement the above reasoning in practical reasoning of law, we have chosen to
do so within a framework called LeSAC (legal support system for autonomous
cars) [16,17,15]. Since it is used only as a theoretical background for this study,
we will not give a detailed description of it here but rather a brief introduction,
and will provide some of the basic definitions needed later on. According to
Figure 1, LeSAC is a structured argumentative framework based on the legal
ontology. It extends the ability of ontology technology to create a common
vocabulary with the storage of legal information through structured argumen-
tation, giving it the ability to reason non-monotonically. It can describe legal
information with the ability to deal with conflicts between law and design and
supports reasoning under preferences. This has been designed to be used in
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previous research to enable legal compliance detection and modification options
for AI product design. In contrast, this paper hopes to help achieve the aim
of updating the conditions of legal reasoning through the new legal intentions
brought about by the features of AI products via the functionality of structured
argumentation.

Fig. 1. Overview of the process of LeSAC

This paper is organized in the following manner. Section 2 is devoted to ex-
amining related work. The following section first introduces the basic settings
of the structured argumentation theory LeSAC , then we discuss how to deter-
mine conditions under which a certain action can be considered sceptically and
credulously justified and how the law could be adjusted by so, demonstrating
with Example 1.1. In section 4, we summarize this work and outline directions
for future research.

2 Related Works

In fact, the repair of the reasoning framework given a reasoning outcome is
a constant concern [5]. A methodology for modifying faulty logical theories
in the framework of classical logic with respect to a targeted outcome [8] has
been developed as a logical framework repair tool called ABC [9] and applied
to the modification of legal rules [13]. The study is able to give a rich variety
of repair options given the conclusions that must be secured, such as creating
new concepts, adding or deleting rules of inference, etc. However, this and
other modification methods based on classical logical approaches are not able
to support non-monotonic reasoning. And they are more focused on resolving
inconsistencies in formal logic and thus pursuing self-consistency, missing the
realistic correspondence and explainability of the reasoning process. Therefore,
we still believe that argumentation theory has its unique advantages in this
problem.

Since the development of formal argumentation, the enforcement of argu-
ments has attracted a lot of attention from researchers over the decades. Most
existing literature focuses on abstract rather than structured argumentation
frameworks [3,2,22]. These works summarize the methods and principles of
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how to adjust the abstract argumentation framework to make an argument
acceptable, as well as how to choose efficient methods, etc. However, in terms
of legal applications, it is challenging for them to reflect the defensive process
required by law, as they do not involve the internal structure of arguments.
Currently, there are relatively few studies addressing this issue from the per-
spective of structured argumentation [4,20]. While these studies place less em-
phasis on specific application contexts, they have not explicitly discussed the
role of argumentation preferences in this process. This paper therefore chooses
to build on LeSAC in an attempt to achieve an update of the conditions for
preference-inclusive reasoning in a specific legal context.

3 Enforcement of Actions

3.1 An argumentation system for autonomous vehicle design

As mentioned above, in [16,17,15], we built a legal support argumentation
theory for autonomous vehicle designs based on legal ontology and structured
argumentation systems [6,19,18], namely LeSAC . Here we give some basic
concepts and definitions to help understand the following content.

Let ∆ = (T,A) be a legal ontology for autonomous vehicle design based
on Description Logics (DL), where T and A represent the TBox, which intro-
duces the terminology, and ABox, which contains facts about individuals of
an ontology, respectively. Given an argumentation system AS, (AS,KA) is an
argumentation theory about ∆, where AS = (L,RT , n) such that RT is the set
of rules corresponding to T (a mapping table can be found in [14]), and KA is
the set of premises based on A. Formally, a LeSAC can be defined as follows.

Definition 3.1 [LeSAC] Let ∆ = (T,A) be a legal ontology, LeSAC =
(L,RT , n,KA) is an argumentation theory instantiated by ∆, where:

• L is a formal language based on description logic and closed under negation
(¬), where ψ = −φ denotes ψ = ¬φ or φ = ¬ψ.

• RT = Rs ∪N is a set of rules corresponding to T , where Rs is a set of strict
inference rules of the form φ1, . . . , φn → φ, and N is a set of legal norms of
the form φ1, . . . , φn ⇒ φ (φi, φ ∈ L); let Rs ∩N = ∅.

• n is a naming function such that n : N → L.
• KA is a knowledge base based on A.

Let Prem(α) returns the set of all the formulas of K used to build argument
α, Conc(α) returns the conclusion of α, Sub(α) returns the set of all the subar-
guments of α, and Rules(α) returns the set of all rules applied in α. Arguments
are constructed by rules from the knowledge base, defined as follows.

Definition 3.2 [Argument] An argument α based on a LeSAC is a structure
obtained by applying one or more of the following steps finitely many times:

(i) φ, if φ ∈ KA, s.t. Prem(α) = {φ}, Conc(α) = φ and Rules(α) = ∅;
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(ii) α1, . . ., αn 99K ψ, 2 if α1, . . ., αn are arguments, such that there exists
a rule Conc(α1), . . ., Conc(αn) 99K ψ in RT , and Prem(α) = Prem(α1) ∪
. . . ∪ Prem(αn), Conc(α) = ψ, Sub(α) = Sub(α1) ∪ . . . ∪ Sub(αn) ∪ {α},
Rules(α) = Rules(α1)∪. . .∪Rules(αn)∪{Conc(α1), . . ., Conc(αn) 99K ψ}.

Conflicts between arguments are called attacks, while the defeat relation is
determined by the preferences on the set of arguments, defined as follows.

Definition 3.3 [Attacks and defeats] Let α, β, β′ be arguments constructed
based on a LeSAC , and ⪯ a preference ordering on A. α attacks β on β′, iff
Conc(α) = −φ and: 1) β′ ∈ Sub(β) of the form β′′

1 , . . . , β
′′
n ⇒ φ; or 2) β′ = φ

and φ ∈ Prem(β) ∩ KA.
Then α defeats β, iff α attacks β on β′ and α ⊀ β′. 3

We say that α strictly defeats β, if α defeats β, while β does not defeat α.
Based on the set of arguments and the defeat relation between arguments,

abstract argumentation frameworks can be constructed and arguments are eval-
uated based on argumentation semantics. The following argumentation seman-
tics are defined according to [7].

Definition 3.4 [Argumentation semantics] Let A be the set of all the con-
structed arguments based on a LeSAC , att = A × A the set of attacks, and
D ⊆ att is a set of defeats. An abstract framework AF is a tuple (A,D). We
say an extension E ⊆ A is conflict-free iff ∄α, β ∈ E s.t. (α, β) ∈ D, and α is
defended by E (or acceptable w.r.t. E), iff ∀β ∈ A, if (β, α) ∈ D, then ∃γ ∈ E
such that (γ, β) ∈ D. Then:
• E is an admissible set iff E is conflict-free and ∀α ∈ E, α is defended by E;

• E is a complete extension iff E is admissible, and ∀α ∈ A defended by E,
α ∈ E;

• E is a grounded extension iff E is a minimal complete extension w.r.t. set-
inclusion;

• E is a preferred extension iff E is a maximal complete extension w.r.t. set-
inclusion.

An argument α is said to be accepted/justified by an extension E ⊆ A
under certain argumentation semantics, if and only if α ∈ E. And for any set of
accepted arguments E ⊆ A, Conc(E) = {Conc(α)|α ∈ E} is the corresponding
set of accepted conclusions of E.

With these basic definitions, we can briefly formalize Example 1.1 in original
LeSAC as follows:

Example 3.5 [Original LeSAC ]

N =

{
r1 : Driver(x), EncounterAccident(x)⇒ Protect(x);
r2 : Cargo(x), EncounterAccident(x)⇒ ¬Protect(x)

}

2 “99K” denotes “→ / ⇒”
3 For any arguments α and β, α ≺ β if and only if α ⪯ β and β ⪯̸ α.
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KA =

{
Driver(AV );Cargo(Dogs);
EncounterAccident(AV );EncounterAccident(Dogs)

}

P =

{
p1 : Safety of the driver should take precedence over safety of the cargo.
p2 : Protecting lives should take precedence over protecting inanimate objects.

}

In Example 3.5, P is a set of legal principles. In [16], we suggested that
preferences on the set of arguments can be “lifted” from the priorities of le-
gal principles that primarily underpin a rule or norm r applied in arguments,
denoted as prin(r). Then for Example 3.5, prin(r1) = p1, prin(r2) = p1. In
this case, LeSAC can describe the process by which existing regulations do not
apply to new situations through argumentation reasoning. Based on previous
research [16,17], it can test the legal compliance of AI product solutions pro-
vided by designers either as is or given new reasoning criteria, e.g., by telling
the designer whether it is legal to design a vehicle to protect itself. And it can
suggest changes to the proposal with ongoing evaluation. However, it does not
support adjusting reasoning conditions to ensure that a particular behaviour is
protected. We will therefore implement this feature in the next section under
structured argumentation.

3.2 Enforcement of actions

Particularly in practical reasoning, actions constitute the decisions that agents
need to make during the reasoning process. For instance, a system like
LeSAC is designed to support autonomous vehicle design in making decisions
regarding actions, based on a specified legal ontology. Consequently, the out-
put of accepted conclusions manifests as a set of actions. The primary focus of
this paper is on how to ensure a certain action is justified within the reasoning
system.

Based on the argumentation semantics introduced in Definition 3.4, since
the preferred extensions and grounded extensions are all complete extensions,
we will focus on the discussion based on the complete semantics. The sets of
extensions based on these semantics are denoted as Pr, Gr, and Co, respec-
tively.

We subsequently explore sceptical and credulous justifications separately.

3.2.1 Sceptical justification

According to the extension-based argumentation semantics, an argument is
said to be sceptically accepted/justified if and only if it is an element of each
extension obtained based on certain argumentation semantics [1]. Correspond-
ingly, we say that an action a is sceptically justified if and only if there exists
a sceptically accepted argument α, such that Conc(α) = a.

If an argument α is sceptically accepted, then based on Definition 3.4, α
is included in the unique grounded extension obtained by the same abstract
argumentation framework.
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This implies that there is a reasoning chain that leads to the conclusion a,
or in other words, there are formulas in KA and rules in RT of a LeSAC that
constitute subarguments of α, such that Conc(α) = a, and meanwhile, for
E ∈ Gr (denoted as EGr), Sub(α) ⊆ E. Therefore, we have the following
proposition.

Proposition 3.6 Let LeSAC = (L,RT , n,KA) be an argumentation theory,
A all the arguments constructed by LeSAC , and α an argument. An action a
is sceptically justified under complete semantics, iff

(i) ∃a1, a2, . . . , aj , . . . , ak, . . . an ∈ KA and rules r1, . . . , rn ∈ RT such that
r1 = a1, a2, . . . , aj 99K a′1, r2 = a′1, . . . , ak 99K a′2, . . ., and rn =
a′1, a

′
2, . . . , an 99K a;

(ii) ∀α′ ∈ Sub(α), ∄α′′ ∈ Sub(α) such that α′′ attacks α′;

(iii) ∀α′ ∈ Sub(α), if ∃β ∈ A such that β attacks α′ and β ⊀ α′, then ∃γ ∈ EGr
such that γ ̸= α′ and attacks β on β′ ∈ Sub(β), and β′ ≺ γ.

Proofs of propositions can be found in the Appendix.
In Proposition 3.6, the first condition states that there is a path starting

from KA, connected by rules in RT , forming an argument with the conclusion
a. Based on these formulas and rules, all arguments in Sub(A) can be con-
structed. This suggests that in order to make a certain action justified by an
argumentation theory, we should supplement the premises in the knowledge
base and rules in the set of rules, from which the action can be derived. Par-
ticularly, for an argumentation theory like LeSAC built on the basis of a legal
ontology, elements in the TBox and ABox should be added. Arguments and
subarguments supporting this conclusion should thus be constructed, leading to
a corresponding expansion of the original abstract argumentation frameworks.

Consider Example 3.5: if we hope the dogs in the autonomous vehicle (AV)
to be protected, then we want the assertion of action “Protect(Dogs)” to be
justified. The original LeSAC can be updated as in Example 3.7, with a new
assertion “Life(Dogs)” and a new rule “Life(x), EncounterAccident(x) ⇒
Protect(x)” be added.

Example 3.7 [Updated LeSAC ]

N =





r1 : Driver(x), EncounterAccident(x)⇒ Protect(x);
r2 : Cargo(x), EncounterAccident(x)⇒ ¬Protect(x);
r3 : Life(x), EncounterAccident(x)⇒ Protect(x);
r4 : Inanimate(x), EncounterAccident(x)⇒ ¬Protect(x)





KA =

{
Driver(AV );Cargo(Dogs);Life(Dogs); Inanimate(AV );
EncounterAccident(AV );EncounterAccident(Dogs)

}

P =

{
p1 : Safety of the driver should take precedence over safety of the cargo.
p2 : Protecting lives should take precedence over protecting inanimate objects.

}
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prin(r1) = p1; prin(r2) = p1; prin(r3) = p2; prin(r4) = p2

In addition, the second condition states that Sub(α) should be conflict-free
according to Definition 3.3, and the third condition states that all the argu-
ments leading to the conclusion a are either not defeated by any argument, or
are defended by an argument already included in a grounded extension through
strict defeat. In many practical cases, this means that any argument in the
set Sub(α) is not attacked or is defended by arguments that are not attacked
and, therefore, have to be accepted. To prevent the subarguments from be-
ing attacked, the involved attacks can be deleted by changing the preferences
between arguments. At a deeper level, and based on our previous work [16],
preferences on the set of arguments can be lifted from the priority relation
between legal principles, suggesting designers consider whether it is necessary
or possible to reasonably adjust the relevant priority orderings. Another con-
sideration is that in some contexts, we can consider deleting those arguments
that cause attacks/defeats. Last but not least, in order to defend the attacked
arguments in the set of subarguments, users could consider adding arguments
(that have to be accepted) and adding the corresponding attacks.

Consider the updated LeSAC in Example 3.7. If we denote the argument
constructed based on r2 as α and the argument constructed based on r3 as β,
then if the principle p1 strictly takes precedence over p2, after preference lifting,
we might get α ≺ β, so the attack from α to β will not become a defeat and
appears in the abstract argumentation framework; if we make p2 strictly takes
precedence over p1, then we might get β ≺ α, and the attack from β to α does
not become a defeat. Moreover, assuming there is a conflict between protecting
the autonomous vehicle and protecting dogs at the same time, the addition of
Inanimate(AV ) and r4, combined with the expected priority ordering of legal
principles (p1 < p2 more likely), can make the argument for adopting the action
“Protect(AV )” be strictly defeated.

3.2.2 Credulous justification

An argument α is said to be credulously accepted/justified under certain ar-
gumentation if and only if there exists at least one extension that includes α
[1]. We say that an action a is credulously justified if and only if there exists
a credulously accepted argument α, such that Conc(α) = a.

If an argument α is credulously accepted, then based on Definition 3.4, α is
included in at least one preferred extension E ∈ Pr (denoted as EPr), obtained
by the same abstract argumentation framework.

Then we have the following proposition.

Proposition 3.8 Let LeSAC = (L,RT , n,KA) be an argumentation theory,
A all the arguments constructed by LeSAC , and α an argument. An action a
is credulously justified under complete semantics, iff

(i) ∃a1, a2, . . . , aj , . . . , ak, . . . an ∈ KA and rules r1, . . . , rn ∈ RT such that
r1 = a1, a2, . . . , aj 99K a′1, r2 = a′1, . . . , ak 99K a′2, . . ., and rn =
a′1, a

′
2, . . . , an 99K a;
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(ii) ∀α′ ∈ Sub(α), ∄α′′ ∈ Sub(α) such that α′′ attacks α′;

(iii) ∀α′ ∈ Sub(α), if ∃β ∈ A such that β attacks α′ and β ⊀ α′, then ∃γ ∈ EPr
such that γ attacks β on β′ ∈ Sub(β), and β′ ≺ γ.

The first and second conditions of Proposition 3.8 are the same as Propo-
sition 3.6, while the difference lies in the third condition: for a certain action
to be credulously justified, it is sufficient to make the set of arguments and
subarguments from which the action is derived to be the subset of a maximal
complete set w.r.t. set-inclusion (i.e., a preferred extension).

Due to space limitations, we omit the similar case-based discussion related
to credulous justification.

4 Conclusion

This paper preliminarily delineates the conditions under which a certain action
can be sceptically or credulously justified with structured argumentation theory
at the foundational level of knowledge bases and rules. Exploration from this
direction is crucial for understanding how arguments can be effectively enforced
within argumentation frameworks, and structured argumentation can offer a
more accessible approach for modelling reasoning processes encountered in real-
life scenarios. By integrating these conditions with the definition of attack and
defeat relation, containing inherent preferences, we have also shed light on the
potential for preference updates in the argumentation theory.

Particularly, the discussion on updating argumentation theory can be ap-
plied to the LeSAC system designed for advancing the design of autonomous
vehicles, which we introduced in our previous papers [16,17,15].

For future work, our next steps include: 1. Further discussing the details of
the update of argumentation theory and how to determine which update is the
most efficient. Much related work on the dynamics and updating of abstract
argumentative frameworks can provide ideas for exploration at the abstract
level, such as [3,2,11]. 2. In the current work, we consider the situation under
the most basic complete semantics in classical argumentation semantics. We
will consider more argumentation semantics in the future, define semantics that
are more suitable for legal contexts, and discuss how to enforce conclusions
under such argumentation semantics.

Appendix

Proofs for Proposition 3.6 and Proposition 3.8.

Proof. [Proposition 3.6]
(⇒)

(i) Assume a is justified. This implies the existence of an argument α for
which Conc(α) = a. Consequently, there must exist premises Prem(α) =
a1, a2, . . . , an ⊆ KA, connected to the conclusion a via applicable inference
rules.

(ii) Consider the case ∃α′, α′′ ∈ Sub(α) such that α′′ attacks α′. According to
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Definition 3.3, ∃β ∈ Sub(α) such that α′′ attacks α′ on it, and in either
case of attacks, β counterattacks α′′. Then according to the definition
of defeats, as long as the preference between arguments is reasonable,
this leads to either β defeating α′′ or vice versa. Therefore there is a
subargument of α that defeats α. Then according to Definition 3.4, if α
is defended under a complete extension E, then there is an argument in
E that defeats this subargument, thereby defeating α, which contradicts
that E is conflict-free.

(iii) Assume the opposite. β defeats α on α′. If such a γ does not exist, then α
is not defended by the grounded extension, hence α is not included in all
complete extensions, contradicting that Conc(α) = a is sceptically justified
under the complete semantics.

(⇐) By (i) an argument α can be constructed such that Conc(α) = a;
by (ii) Sub(α) is conflict-free; and by (iii) all α′ ∈ Sub(α) are defended by a
grounded extension EGr. According to Definition 3.4, a grounded extension
is complete, hence EGr includes all elements of Sub(α). According to [1], the
grounded extension is included in any complete extension, therefore Conc(α) =
a is sceptically justified under the complete semantics. 2

Proof. [Proposition 3.8]
(⇒) The proof for conditions (i) and (ii) is the same as in Proposition 3.6.

For condition (iii), suppose the opposite. If such a γ does not exist, then since
a preferred extension is a maximal complete extensions w.r.t. set-inclusion,
α is not defended by any complete extensions, therefore not included in any
complete extensions, contradicting that Conc(α) = a is credulously justified
under complete semantics. This contradiction establishes the necessity of γ’s
existence for the credulous justification of a under the complete semantics.

(⇐) By (i) an argument α can be constructed such that Conc(α) = a; by (ii)
Sub(α) is conflict-free; and by (iii) all α′ ∈ Sub(α) are defended by a preferred
extension EPr. By replacing EGr with EPr in the proof of Proposition 3.6, we
can prove that Sub(α) ∪ EPr is conflict-free, then Sub(α) ∪ EPr is at least a
subset of a complete extension. Therefore, Conc(α) = a is credulously justified
under the complete semantics. 2
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Abstract

Cases of bias and unfair decisions in automated decision-making are heavily discussed. When
unfair decision outcomes can be attributed to an unjust difference in the knowledge of various
groups of subjects, we can speak of epistemic injustice. In this paper, we analyze various kinds
of epistemic injustice, such as testimonial, hermeneutical, distributional, and content-focused
epistemic injustice, and show how they can be conceptualized. We then provide a formalization
of the difference in group knowledge, in a version of epistemic logic. After that, we discuss two
cases of badly designed information systems for government decision-making. We analyze key
observations from the cases pointing out that they constitute a form of epistemic injustice.

Keywords: social epistemology, injustice, bias, epistemic logic

1 Introduction
Automated decision-making systems (will) make decisions that matter. An important
concern about applications of AI is bias in decision-making [18, 26]. Systems, as well
as humans who are supported by (or provide the data to such) systems, do make deci-
sions that are unfair or unjustified for certain groups, relative to other groups. Some
groups in society do not know the procedures or are unable to fill out the required
forms [24]. Therefore, these groups are treated unfairly. For example, some groups
are relatively more likely to get into trouble with the tax office than other groups
[10, 19]. How can we analyze such cases? In general, errors in automated decision-
making may occur because (i) the algorithm or decision rules are biased, (ii) the data
set on which the system was trained is biased, or (iii) the human operator who should
counterbalance possible system bias, is not supported to do this difficult task [18].

Social epistemology investigates the epistemic aspects of social interactions [17].
Fricker has proposed to analyze some of the above-mentioned cases in terms of epis-
temic injustice [15]. The term has two parts: (i) injustice: there is a moral wrong or
a legal right that is violated (ii) epistemic: the wrong is based on a difference in the
knowledge or information that is available to some groups in society relative to other
groups [15, 12, 13, 20, 22]. In this paper, we provide an initial formal conceptual
analysis of the epistemic part, showing that in some cases (types) the injustice is due
to the decision-maker’s epistemic state (regarding the subject group’s knowledge).

The discussion about epistemic injustice is part of a wider trend combining ethics
and epistemology, for instance, in business ethics [12] and medical ethics [6]. Here
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we look at another application: government decision-making, e.g. [24]. We refer
to observations from two scandals about errors in government decision-making: the
‘Toeslagenaffaire’ [10] in the Netherlands, and the RoboDebt case in Australia [19].

The aim of the paper is to: (i) identify the main types of epistemic injustice from
the literature, and provide a possible explanation for the mechanisms that give rise
to epistemic injustice; (ii) use epistemic logic to specify the difference in knowledge
between groups; (iii) explain observations from the cases [10, 19], to establish whether
those constitute a form of epistemic injustice.

The paper is structured as follows. In Section 2 we analyze the notion of epistemic
injustice. In Section 3 we formalize the definition in an epistemic logic and in Section
4 we provide an initial formal analysis of some types of epistemic injustice. Section 5
describes the cases, and provides observations that illustrate epistemic injustice. The
paper ends with conclusions and suggestions for further research.

2 What is Epistemic Injustice?
Epistemic injustice is a form of injustice related to knowledge. The Handbook of
Epistemic Injustice says “epistemic injustice refers to those forms of unfair treatment
that relate to issues of knowledge, understanding, and participation in communicative
practices.” [22, preface]. The notions of justice and injustice have been widely dis-
cussed in moral and legal philosophy. We do not recall this literature here, but focus
only on the epistemic part of epistemic injustice, based on how it is handled in social
epistemology. In the context of social epistemology [22], we look at differences be-
tween groups in society. So, injustices are studied that can be attributed to a (lack of)
knowledge in one group, relative to another. As we will point out, in several cases,
not the actual knowledge of one agent or group is what is relevant, but the beliefs—or
prejudices—of others regarding it.

2.1 Types of Epistemic Injustice
The notion of epistemic injustice was orginally introduced by Fricker [15]. In this
paper, we distinguish four types: (C1) distributional injustice, (C2) testimonial in-
justice, (C3) hermeneutic injustice, and (C4) content-focused injustice. Fricker [15]
discusses testimonial and hermeneutic epistemic injustice the most, but distributional
injustice is also mentioned, and worked out in more detail in a later work of her [16].
Content-focused epistemic injustice was introduced much later by Dembroff and
Whitecomb [14], although such cases were known before.

Distributional injustice concerns a situation in which one group has less (access
to) knowledge than another (privileged) group, leading to unfair treatment. For lack
of a better word, we will call this distributional injustice, because it is based on an
unequal distribution of knowledge or education [16, p 1317]. We should emphasize
however, that not all cases of unequal distribution of knowledge constitute an injustice.
A large part of society is based on merit and education. People who study and know
more get more opportunities. It only becomes an injustice when access to knowledge
is withheld from certain groups. This may be, for example, when documents are not
made available in a minority language.

Testimonial injustice is a form of unfairness related to the relative trust in some-

  Towards  a  Logical  Analysis  of  Epistemic  Injustice

79



Hulstijn, Dong, Markovich

Fig. 1. Basic setting: speaker a from group A makes assertion ϕ to addressee b from group B.
Speaker a depends on a decision by b to receive some benefit ψ . Decision to grant ψ requires
that b believe ϕ . Members of group B are prejudiced against A.

one’s capacity as a knower, for example, as an expert witness in a trial. An injustice of
this kind can occur when someone is not believed or even ignored, because of group
properties like their sex, sexuality, gender presentation, race, disability, or more gener-
ally, because of their identity [15]. For example, when Marilyn Von Savant, the person
having the highest recorded IQ in the world, provided the correct answer to the Monty
Hall problem in the column of Parade Magazine, tens of thousands of people (includ-
ing many mathematicians and other academics) reacted by publicly rejecting harshly
what Von Savant said. Most of the reactions just considered her answer unimaginable
to be correct, which—as we will see—falls into the category of content-focused injus-
tice (C4), but several reactions reflected upon her being a woman as a reason for being
wrong, which is a case of testimonial injustice (C2). 1

Hermeneutical injustice is a form of unfairness related to how people interpret and
understand their situation, and their ability to formulate believable statements about
that situation. The term ‘hermeneutic’ comes from the Greek word for interpreter.
After all, hermeneutics is the philosophical discipline that is concerned with inter-
pretation or understanding. An example given by Fricker is that before the 1970s,
victims of sexual harassment had trouble describing in court the behavior of which
they were the victims, because the concept had not yet been articulated. In particular,
legal procedures demanded physical evidence of abuse, which was hard to obtain.

Content-focused epistemic injustice [14]is a form where the unfair treatment is not
based on characteristics of the group but rather on the content of what they say. A
particular type of message (content) is ignored or mistaken, for example, because it
doesn’t align with the consensus opinion in the dominant group.

2.2 Setting
Consider the following setting, characterized by prejudice and dependence (Figure 1)
There are two groups: A and B, whose members speak the same language, but have
different knowledge and a different ontology to conceptualize the world.

Suppose speaker a∈A makes assertion ϕ to addressee b∈B, because as part of his
tasks b must make a decision ψ on which a depends. For example, b must decide to
grant a subsidy or not. Formally, the decision depends on b accepting a’s statement ϕ
as true. Statement ϕ is typically supported by documents of written evidence (financial
statements; tax returns etc). For example, when a doesn’t provide proof of residence
in the municipality in which the subsidy is claimed, b will not believe that a is eligible
for a subsidy, and b will not grant the subsidy.

1 See: https://priceonomics.com/the-time-everyone-corrected-the-worlds-smartest/
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2.3 Speech act theory
We will now analyze the social setting presented in Figure 1, in terms of Speech Act
theory [2, 25]. In Table 1 we analyze the utterance in several layers: form (syntax),
content (semantics), and function (pragmatics). At each layer a performs various acts:
(1a) locutionary: sending a statement message, (2a) illocutionary: conceptualizing
and encoding the statement, and (3a) perlocutionary: making a statement as part of
a valid decision request. These acts from a are complemented by corresponding acts
by b, at each level: (1b) receiving the statement, (2b) understanding the meaning of
the statement, and (3b) accepting the statement as valid. This reflects the idea that
communication is a joint action by speaker and addressee, at various layers [9] .

If we say “b doesn’t believe a’s statement ϕ”, this may have several possible rea-
sons. There are in fact six potential points in the model, where something may go
wrong. Now the four types of epistemic injustice can be positioned in this model.

C1 Distributional. Members of A lack knowledge ϕ , which members of B do have.
Knowledge of ϕ is necessary to obtain some benefit ψ . So a cannot make a state-
ment that ϕ (1a) that is received by b (1b), by lack of preparatory conditions.

C2 Testimonial. Members of A are in general not seen as trustworthy, about topics
related to ϕ . Therefore, b doesn’t accept statement ϕ as true (3b), by a supposed
lack of sincerity of a.

C3 Hermeneutical. Members of A lack knowledge, to conceptualize and encode the
intended meaning ϕ in a statement, that b will accept. (2a)

C4 Content-focused. Members of B share a consensus that ϕ is false. Therefore,
content ϕ will not be understood by b (2b), or a’s statement ϕ will not be accepted
by b to be true (3b).

For content-focused epistemic injustice, there are two possible explanations. (i) Con-
firmation bias: ϕ may not be accepted as true, to protect the group consensus (3b).
If an individual b accepted ϕ , he would threaten the group’s consensus or place him-
self outside of the group. (ii) Cognitive dissonance: statement ϕ is so far removed
from what is considered normal, that for b it takes much more effort to process and
accept it, than to reject it. For example, b lacks the ontology to understand the prob-
lems of a (2b). This seems to be the counterpart of hermeneutical injustice for the
addressee. Sometimes, these types of epistemic injustice strengthen each other. For
example, suppose b believes that ϕ must be false because it goes against the consensus
(content-focused). So for b, the reason that a makes a false statement ϕ can only be
that a seeks to gain from it. So b doubts the sincerity of a (testimonial injustice).

a b
receiving the statement–sending a statement1. locutionary:

conceptualizing and encoding2. illocutionary:
the meaning

understanding and decoding the–
meaning

3. perlocutionary: making a valid statement – accepting the statement as valid

Table 1
Model of information exchange as joint action at various linguistic levels [2, 9]
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2.4 Example: Complaints
The two cases we will discuss in Section 5 below [10, 19], are both prescriptive sys-
tems: they have a word-to-world direction of fit. In case of a conflict about the contents
of the system, the subjects of the decision are at a disadvantage. To file a complaint,
they have to substantiate the claim by evidence, but, by the nature of the system, often
there is no credible source to testify their version of reality. That means that a conflict
becomes a game of trust. Now consider a subject to an automated decision, who feels
she is being wronged. That means she must file a complaint. However, in both cases
[10, 19], complaints were ignored or rejected without motivation.

The four types of epistemic injustice we identified above based on [15, 14] can be
used to explain the social mechanisms why complaints were ignored. In some cases,
more categories apply. For example, a conflict of opinion (C4) may further reduce the
perceived sincerity of the group (C2).

C1 Distributional injustice: subjects who want to complain about a system error, lack
technical knowledge about the system, lack legal knowledge of the grounds for the
decision, or lack knowledge of the procedures to file a complaint, and do not know
people who could help them.

C2 Testimonial injustice: subjects who complain are not believed by the officials, be-
cause they are part of a specific group. Or, the officials who treat the complaint
demand documented evidence, of a kind that is not available for this group (e.g.
proof of income). Usually, subjects are expert on their own situation. So here they
are wronged in their capacity of knowing the relevant facts that matter to the case.

C3 Hermeneutical injustice: subjects who want to complain about a system error, know
very well that something is wrong. But they are not experts in tax law and do not
know the formal legal terminology (e.g. tax debt; evidence) in terms of which to
analyze their own situation and formulate a specific complaint.

C4 Content-focused injustice: subjects who file a complaint about the system, thereby
claim that the system is wrong. The people responsible for the system, believe
the system cannot be wrong. After all, “the system has been carefully developed,
and has been tested by experts, etc” The complaint is much harder to understand,
than the alternative (cognitive dissonance). Moreover, the complaint contradicts the
consensus opinion among the system experts. People will not actively seek evidence
to disproof that consensus (confirmation bias). That means, that the complaint must
be wrong or even insincere.

3 Epistemic Injustice: An Epistemic Logic Perspective
The different types of epistemic injustice can be analyzed in a general model of knowl-
edge and information exchange which is the basis for our initial logical analysis. We
will now discuss a version of epistemic logic to provide such a model. But epistemic
injustice goes beyond the wrongful recognition of an individual’s epistemic status, it
also examines how this misrecognition can lead to unfairness, which leads us to rely
on logical considerations of actions as well since, in this paper, we conceptualize this
unfairness as unsatisfactory decisions for a person making a request for action. In

82



this section, thus, we will explore both the epistemic and action-oriented elements of
epistemic injustice by introducing an action-based epistemic logic.

In this logic, the language we use to address the types of epistemic injustice in-
cludes individual knowledge Ka, individual belief Ba, and common belief CG. We also
include the modality Ea to illustrate actions or decisions.

Definition 1 (Language) Let Prop be a countable set of atomic propositions, and I
be a finite set of agents. The language L is defined as follows:

ϕ ::= p | ¬ϕ | ϕ ∧ϕ | Kaϕ | Baϕ |CGϕ | Eaϕ |2ϕ,

where p ∈ Prop, a ∈I , and /0 ̸= G⊆I .

The dual of Ka, denoted as K̂a, illustrates the consistency with agent a’s knowledge.
So K̂aϕ is defined as ¬Ka¬ϕ and read as “ϕ is consistent with agent a’s knowledge.”
Similarly, the dual of belief B̂aϕ is defined as ¬Ba¬ϕ and read as “ϕ is consistent
with agent a’s belief,” and the dual of universal modality 2 is the existential modality
3 such that 3ϕ := ¬2¬ϕ . The B-modality is a KD4-modality, K- and 2-modalities
are S5-modalities, and CG-modality is a KD4-modality.

The sender’s or applicant’s request is dealt with by the decision maker, she has
the right to decide whether to fulfill the request or not. To express the fulfillment of
the right of decision, our language includes an additional operator, denoted as Eb, to
represent agent b’s action execution. Thus, Ebψ can be interpreted as “Agent b takes
specific actions to ensure that ψ holds true,” or, from the perspective of agency theory
or STIT logic [7, 4], “Agent b ensures that ψ is the case.” In this context, we adopt
Chellas’s proposal [8] and treat this action operator, Eb, simply as a T-operator. The
dual of Eb is denoted as Êb, and Êbψ is equal to ¬Eb¬ψ .

Definition 2 (Models) A structure M = (W,{Ra}a∈I ,{Da}a∈I ,{∼a}a∈I ,V ) is a
model when it satisfies the following conditions:
• W is a non-empty set of states;
• Ra is an equivalence relation over W ;
• Da is a transitive and serial relation over W , such that Da ⊆ Ra;
• ∼a is an equivalence relation over W ;
• V : Prop→℘(W ) is a valuation function.

The accessibility relation Ra interprets individual a’s knowledge, Da represents in-
dividual a’s belief, and ∼a represents individual a’s ability to execute actions. We
can define the transitive closure of all individuals’ beliefs in the group G as DG =
(
⋃

a∈I Da)
+. Now our modalities can be interpreted as usual:

M,w |= Kaϕ iff Ra[w]⊆ ||ϕ||,
M,w |= Baϕ iff Da[w]⊆ ||ϕ||,
M,w |=CGϕ iff DG[w]⊆ ||ϕ||,

M,w |= Eaϕ iff ∼a [w]⊆ ||ϕ||,
M,w |=2ϕ iff W ⊆ ||ϕ||,

where ||ϕ||= {w ∈W |M,w |= ϕ}. So the following statements are valid:
CB CGϕ → Baϕ if a ∈ G; KB Kaϕ → Baϕ .

By applying this action-based epistemic logic, we are able to define, for instance,
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the epistemic aspects of Fricker’s notion of testimonial injustice, which involve the
incorrect recognition of one’s capacity as a knower.
• Agent b wrongly recognizes agent a’s knowledge: Kaϕ ∧Bb¬Kaϕ;
• Agent b wrongly recognizes agent a’s credibility of knowledge: Kaϕ ∧¬BbKaϕ .

In the next section, we will explore the formalization of the four types of epistemic
injustice within our epistemic logic.

4 Towards a Formal Theory of Epistemic Injustice
We present four assumptions, (Ai) – (Aiv), that characterize the situation of a decision
maker b, who, as recipient of a statement ϕ , doubts the credibility of the sender a
and subsequently rejects b’s request, especially when sender a ∈ A is perceived to
be outside the privileged group B, and b ∈ B (see Figure 1). We introduce notation
A ⩽ B to indicate that group A holds a disadvantaged epistemic position relative to
group B. In this paper, we have not introduced a semantics for the expressions such as
A ⩽ B. However, it’s worth noting that this is a viable possibility 2 3 . The framework
conditions provided here offer valuable insights for undertaking this task.

Within this context, a ∈ A represents the message sender, while b ∈ B signifies the
message receiver and decision maker. In addition, ϕ represents the evidence submitted
by a and ψ represents the requested decision to be made by b. Proposition 2(ψ→ ϕ)
represents that “Evidence ϕ submitted by a is required to fulfill the request for ψ”.
This means that the evidence is a necessary condition for fulfilling the request. The
formalization of the four assumptions are as follows: 4

Ai For all b ∈ B: 2(ψ → ϕ)→ (Ebψ → Bbϕ);
Aii For all a ∈ A and b ∈ B with A ⩽ B: Bbϕ → Kaϕ;

Aiii For all a ∈ A and b ∈ B with A ⩽ B: Bbϕ → BbKaϕ;

Aiv For all b ∈ B: CB¬ϕ → Bb¬ÊbCBϕ .

These assumptions serve to elucidate the underlying factors leading to prejudice
against individuals in disadvantaged positions by those in privileged positions. Preju-
dice, as delineated by these four assumptions, is not solely a manifestation of power

2 Intuitively, A ⩽ B when according to any b ∈ B, any a ∈ A believes fewer formulas than b ∈ B. Let
Formw(b,a) = {ϕ | M,w |= BbKaϕ}. We have M,w |= A ⩽ B iff Formw(b,a) ⊆ Formw(b,b) for all a ∈
A,b ∈ B.
3 In this setting, notation A ⩽ B is relative to the topic area of proposition ϕ . Suppose Prop is divided in
overlapping subsets T ⊂ Prop, that denote a topic area, such as finance, or sports, etc. A formula can be
classified by the topic of the proposition letters in it. Now in general, a person b trusts a person a to know
ϕ whenever the topic of ϕ is in the competence areas of person a, according to be b. See [11]
4 The frame conditions to validate (A1) – (A4) are as follows:

(Ai) ∀wu ∈W (wDbu→ w∼b u);

(Aii) ∀wu ∈W (wDbu→ wRau), if A ⩽ B, a ∈ A and b ∈ B;

(Aiii) ∀wuv ∈W (wDbu∧uRav→ wDbv), if A ⩽ B, a ∈ A and b ∈ B;

(Aiv) ∀wuv ∈W (wDbu∧u∼b v→ wDbv).
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owned by privileged decision-makers. It also arises from the presence of several irra-
tional assumptions underlying their decision-making processes. These irrationalities
become apparent in the assumptions we have outlined above:

Assumption (Ai) captures the decision rights of b to grant ψ . Here Ebψ → Bbϕ
means that b believes evidence ϕ is a necessary condition for b to ensure ψ .

Assumption (Aii) reflects the irrationality of the advantageous and dominant po-
sition held by the receiver: If the decision maker b ∈ B, positioned in an advantaged
state B (which is illustrated as A ⩽ B 5 ), and holds a certain belief, it serves as a
compelling rationale to posit that members of the disadvantaged group must possess
the same knowledge. In essence, the beliefs of the privileged party take precedence
over the knowledge of the disadvantaged party. Further, the concept of prejudice is
exemplified by this interdependence: When an individual lacks knowledge of ϕ , this
becomes a reason that the information sent by this agent is not believed by the decision
maker, primarily due to their skepticism toward the disadvantaged group (i.e. A ⩽ B).

Assumption (Aiii) highlights the dominant position of the advantaged group from a
different perspective. When an individual within the advantaged group accepts a piece
of information, they believe that any member in the disadvantaged group must possess
this information as their knowledge. This phenomenon underscores the concept of
“prejudice” as one type of interdependence of communication: The beliefs of the
dominant individual influence their perceptions regarding the knowledge of those in
the disadvantaged group.

Assumption (Aiv) sheds light on the concept of common ground within the priv-
ileged group. Simply speaking, when a piece of information is established as part of
the common ground for the group, every individual within that group believes it is
impossible to revise such a common belief.

To understand epistemic injustice, these four assumptions play a pivotal role, as
outlined in Table 2. Note that the reasoning behind distributional injustice, testimonial
injustice, and content-focused injustice differs in three key aspects, respectively: dis-
tinctions in factual information, beliefs of decision-makers about credibility of groups,
and beliefs of decision-makers about credibility of content.

Distributional injustice is rooted in the fact that the sender a, who is in a disadvan-
taged position, lacks knowledge of the evidence ϕ , which can be expressed as ¬Kaϕ .
Given this fact and the communication assumption (Aii), it leads to “weak belief ”: the
decision maker b does not believe in the evidence ϕ submitted by agent a, denoted as
¬Bbϕ . This type of belief is considered weak, because it is derived from a basis of the
other’s lack of knowledge [27, 21]. Following assumption (Ai), which addresses the
decision right of b, the decision doesn’t fulfill the request ψ from agent a: ¬Ebψ .

In contrast, the reasoning process for testimonial injustice follows a different path.
While it also involves a weak belief ¬Bbϕ , it is inferred from a distinct basis of infor-
mation. Testimonial injustice is rooted in the fact that the sender a indeed possesses

5 In this paper, we introduce a binary relation denoted as ⩽ to illustrate intergroup prejudice, providing a
simplified representation for this key concept in epistemic injustice. While it’s acknowledged that prejudice
in the real world can be influenced additionally by various factors, such as topics that are discussed in [11],
our current focus centers on establishing the logical principles for defining prejudice between groups. The
examination of prejudice with respect to both groups and topics remains a subject for future research.
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knowledge of the evidence ϕ (i.e., Kaϕ). It also relies on the epistemology assump-
tion that the decision-maker does believe the sender genuinely lacks knowledge of the
evidence, denoted as Bb¬Kaϕ . This belief is referred to as “strong belief,” because
it is assumed and not derived. This strong belief is labeled as a prejudice, because
it presupposes that everyone in a disadvantaged group A lacks knowledge about this
topic area, regardless of its actual veracity. From this strong belief, assumption A2
and axiom D, the weak belief ¬Bbϕ can also be inferred. Ultimately, assumption A3
leads to non-fulfillment of the request.

Facts Beliefs
Request
Fulfillment

Inferential Elements

Distributive
Injustice

2(ψ → ϕ)
¬Ka2(ψ→ ϕ) Weak: ¬Bbϕ Aii, ¬Kaϕ
¬Kaϕ ¬Ebψ Ai, 2(ψ → ϕ), Weak

Testimonial
Injustice

2(ψ → ϕ) Strong: Bb¬Kaϕ
Ka2(ψ → ϕ) Weak: ¬Bbϕ Aiii, D, Strong
Kaϕ ¬Ebψ Ai, Weak

Content-
focused
Injustice

2(ψ → ϕ) Strong: CB¬ϕ
Ka2(ψ → ϕ) Weak1: CB¬Kaϕ T, NECC, Strong

Weak2: Bb¬Kaϕ CB, Weak1
Kaϕ Weak3: ¬Bbϕ Aiii, D, Weak2

¬Ebψ Ai, Weak3
Weak4: Bb¬ÊbCBϕ Aiv, Strong

Table 2
A Classification of epistemic injustice (C1,C2,C4), where a ∈ A and b ∈ B with A ⩽ B.

In the last row of Table 2, content-focused injustice, we can model two cases:
(i) the individual case Bb¬ϕ and therefore ¬Bbϕ , so the request is rejected, and also
Bb¬Kaϕ , so the requester is denied in her right as a knower, and (ii) the group consen-
sus case, CB¬ϕ and therefore ¬CBϕ , so the request would be rejected by any official,
but also CB¬Kaϕ , so the requester is by consensus denied in the right as a knower.

Note however, that in this simple form of epistemic logic we cannot distinguish
between the failure of b to understand ϕ , and the failure of b to publicly accept state-
ment ϕ . We cannot express the need for belief revision either, if ϕ would be accepted
as true in case ¬ϕ is already believed, which would take effort. For a similar reason,
the current formalism lacks the tools to address (C3) hermeneutical injustice, as we
cannot express that only some agents have an ontology to understand (for b) or to
express (for a) a problem situation, so we leave all these to future work. What we
can represent is that b would be inclined to believe that ϕ based on a statement by a,
but still believes that it would be impossible to convince the others: CB¬ϕ but Bb3ϕ
(while, let’s say, most of the group members also believe that it is actually 2¬ϕ), so
also Bb3Kaϕ , but still Bb¬3CBϕ (or just Bb¬3EbCBϕ) so he doesn’t do anything.

5 Cases
In this section we analyze two cases of automated decision making for government,
that display errors in decision making. The purpose is to test if these errors can be clas-
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sified as by the four types of epistemic injustice. We use publicly available sources, in
particular parliamentary investigation reports [10, 1, 19].

5.1 Case 1. Toeslagenaffaire (Netherlands)

The Toeslagenaffaire (child care benefits scandal) is a complex and sensitive set of in-
terrelated cases and problems, of a political, legal, technical and administrative nature,
in the Netherlands in the period 2010-2017 [10]. The consequences are still felt. Here
we can only provide a few telling observations. Observations are bold in the text.

The benefit scheme started with politicians’ wish stimulate women to get paid
work and create a market for childcare. The state is funding care centers indirectly by
reimbursing parents for the costs incurred. This may involve several hundreds of Euros
per month. To get reimbursed, parents have to apply for childcare benefits. Childcare
benefit is a conditional entitlement. Parents are only entitled to a certain amount of
benefit, if they actually use childcare for a certain number of hours, if the childcare
center is approved, and if their combined income stays below a certain threshold.

To provide evidence of these conditions, parents have to fill out forms and supply
documents, often obtained from other parties. Given the complexity of the forms and
rules, it is likely that mistakes are made. Moreover, many people do not know in
advance exactly how much income they will earn. In general, social benefit agencies
are used to working with such estimates. However, for Toeslagen, the law made the
families responsible for providing exact numbers about their situation. This attitude
was driven by a political pressure to combat fraud, in the years before the scheme.

The Netherlands Tax Administration was tasked with executing the scheme, in
particular the department Benefits (Belastingdienst/Toeslagen). At the time, the tax
office was seen as more competent in IT, than other government agencies.

Here we focus on a specific case (CAF-11). The tax office generally applies risk-
based supervision [5]. However, here subjective risk indicators were used. For
example, a person owns an expensive car without the income to support it. Indicators
were used to identify suspected people, and place them in a system called CAF-11,
which was effectively a blacklist. Indicators were not verified to be useful for finding
fraud. Some risk indicators, like double nationality, were later ruled to be ineffective,
unnecessary for the task and therefore unlawful (GDPR), and even discriminatory [3].

Originally, the list was only used by fraud teams, to collect early warning signals.
From 2014, the list was also used for regular application processing. Being on the
list itself became a sufficient reason to be denied childcare benefits. Citizens received
no explanation for such rejections. Naturally, these citizens complained, but many
complaints were ignored or rejected. This shows a pattern [1]:

“In the CAF 11 case, the focus on fighting fraud caused institutional bias, accord-
ing to the committee. That bias meant that from the outset, the actions of Benefits
were based on the suspicion that the CAF 11 parents had committed fraud. A sus-
picion that was not based on the personal actions of these parents, but on the mere
fact that they were being monitored as part of the CAF 11 file.” Translation of [1].

The term institutional bias (institutionele vooringenomenheid) in the committee
report, led to a heated political debate. It means that Benefits was prejudiced against
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TypeEffectObservation
testimonialdecision based on group identity, not evidencesubjective indicators
distributionalcitizens had no knowledge of what went wrongno explanation
dist. test. herm. cont.officials had no knowledge of what went wrongcomplaints ignored
test.; cont.decisions based on systematic prejudiceinstitutional bias
testimonialmistakes treated as intentional or grave neglectaimed at shortcomings
herm.; cont.treated as criminalno opportunity to correct
testimonialdisproportional; treated as criminalall-or-nothing

no redress mechanism increased duration, harm herm.; cont.

Table 3
Observations in the Toeslagenaffaire analyzed as types of epistemic injustice

a group of parents, namely those listed on the CAF 11 file. The bias was institutional
because it was given a place in work instructions and also worked through in objec-
tion and appeal procedures, in the recovery measures as well as in new applications
for childcare benefits from these parents. For instance, hearings revealed that manage-
ment overseeing the CAF fraud team accepted that if about 80% of the people on the
list were indeed ‘bad guys’, 20% of people on the list must be ‘good guys’, and thus
unjustifiably targeted (80/20 rule). ([10, p 47].

After terminating a benefit, the tax office would investigate whether parents had
been entitled to the benefits received. This investigation was deliberately aimed at
finding shortcomings—even the slightest ones—in administration, payments, or sup-
porting documents to have the benefit withdrawn. Citizens normally get an opportu-
nity to correct their statements, except when the tax office believes manipulations are
intentional. However, here citizens were given no opportunity to correct. That is,
citizens making mistakes were treated as criminals. If an administrative discrepancy
was discovered, the entire benefits amount had to be paid back, not just a correction
(all or nothing approach). This increased the impact on families, with many perceiv-
ing it as a punishment. Later, legal scholars agreed this was disproportional [10].

The law that regulates the social benefits scheme, does not give officials explicit
discretionary power to deviate from the policies. For example, there is no hardship
clause, as is customary in other social benefit schemes. The strict application of the
law was also confirmed in case law. The Council of State (Raad van State) often ruled
in favour of Toeslagen, in appeal cases in which the strict application of the right to
childcare benefits was questioned. Internal doubts by officials in the tax office about
the hardship, were silenced, with reference to the ruling by the Council of State. So
initially, there were no mechanisms for redress or appeal. This greatly extended the
duration and impact of the hardships sustained by families.

Table 3 repeats the main observations and shows that they constitute a case of
epistemic injustice. To summarize, all forms of epistemic injustice were present in
this case. Distributional and testimonial are most common, but also cases of content-
focused and hermeneutical were found, especially in the aftermath and the inability of
the administration to handle complaints and redress the problems.

5.2 Case 2. Robodebt (Australia)
We can only shortly address the Centrelink case in Australia (New South Wales),
known as ‘RoboDebt’ [19]. As before, observations are shown in bold, and cate-
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TypeEffectObservation
testimonialdecision based on estimates, not evidenceestimates unverified
distributionalcitizens had no knowledge of what went wrongno explanation
dist. test. herm. cont.officials had no knowledge of what went wrongcomplaints ignored

no redress mechanism increased duration, harm herm.; cont.

Table 4
Selection of observations in the Robodebt case analyzed as types of epistemic injustice

gorized as forms of epistemic injustice in Table 4. The Centrelink system refers to
a long-term project, supported by a computer system, that was meant to automati-
cally calculate and subsequently collect the ‘debts’ of a citizen. By debts they meant
claimed social benefits to which the receiver was not lawfully entitled. The scheme
was based on the belief, that fraud with social benefits was widespread. The debt col-
lection was to generate revenues for the government, and earn back the investments.

These reclaimable debts were calculated, based on data about income and social
status originally provided by the citizen, and on data transferred from the Australian
Tax Office. However, if relevant data was absent, the system would use heuristics
and machine learning techniques to estimate the missing data, based on the average
income of the previous period. We could say this tendency reflects a prejudice about
a proper income. Especially for people with fluctuating incomes, this was disadvan-
tageous. Although unverified, these estimates were used as evidence to calculate the
debt to be paid. Some people had to pay a large amount of debts they didn’t owe. Cit-
izens received no explanation. Victims found it impossible to understand what they
had done wrong, and what caused these large debts. Some victims stated they thought
they had lost their minds: it was their word against that of the tax office. Complaints
were often ignored or rejected. Once reports about errors surfaced, it took a long
time for the government to admit this. Hence, there was no redress procedure.

5.3 Comparison
There are many similarities between the two cases. Both were concerned with social
benefits, acclaimed fraud, and a very harsh and strict interpretation of what constitutes
financial evidence. Both projects were initiated under large political pressure to get
results, to reduce fraud. Both projects showed a large trust in technology from the
government, and a lack of understanding for the specific situation of citizens, espe-
cially for those in the target audience (people with lower incomes). In both cases, it
took a long time for victims to be heard and to get compensation, and eventually, both
cases triggered a huge political scandal, and parliamentary committees investigated
the legal and political aspects [10, 23, 19].

There are also interesting differences. The Dutch case focused on fraud detection
in child care benefits, and was executed by a department of the tax office. The Aus-
tralian case is about the reclaim of debt (unentitled benefits), based on social security
laws. It was executed by a special administrative body, which lacked oversight.

6 Conclusions and future work
We have investigated a complex and sensitive topic from social epistemology: epis-
temic injustice. We have defined it and identified four types, based on the literature
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[15, 16, 14]: distributional, testimonial, hermeneutical, and content-focused epistemic
injustice. We have analyzed the mechanisms behind these types using speech act
theory, and provided an initial formal characterization of three of these types in an
action-based epistemic logic for beliefs and knowledge (distributional, testimonial,
and content-focused injustice). We presented four assumptions as foundational ele-
ments in the development of a formal theory encompassing these three types. These
assumptions elucidate the inferential components at play in the reasoning processes
of privileged individuals. There is a lot for future work in the logical representation:
e.g., so far, we cannot express the hermeneutical type, we cannot properly express the
notion of social power, nor the notion of identity prejudice, which plays a crucial role
in Fricker’s original work. Currently, this part of the analysis is based on a simpli-
fied setting (Figure 1). In the future, we would like to generalize and add a notation
for background facts about roles and social relations between agents, that influence
epistemic trust and prejudice. We have also analyzed one case about a government
decision-making system [10], and list observations corresponding to each epistemic
injustice types. In future work, we want to analyze the second case [19] in more detail.
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Abstract

In this paper, we investigate the decidability of Horn sequent in intuitionistic tense
logic S4. By constructing the finite model property (FMP), the decidability result
follows. This contributes to solving the open problem of decidability of intuitionistic
tense logic.
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1 Introduction

Ewald introduced intuitionistic tense logic in 1986 [9]. Within this frame-
work, Ewald considered four tense operators, comprising two pairs of adjoint
modalities: (F (3), H(■)) and (P (♦), G(2)), which are integrated within intu-
itionistic logic. This foundational logic, denoted as IKt, was further explored
by Figallo and Pelaitay in [10]. They provided an algebraic axiomatization
of IKt-algebras, showing its soundness and completeness within the class of
IKt-algebras. The intuitionistic tense S4 logic IS4t is clearly S4 extension of
IKt.
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Intuitionistic logics and their modal expansions (cf. [26], [27], [29]), have
attracted significant attention in artificial intelligence and computer science
(cf. [6]). Intuitionistic tense or temporal logic was regarded as a fundamental
component of temporal equilibrium logic (TEL), and important for answer-set
semantics or answer-set programming (ASP), which are central in practical
knowledge representation (cf. [11], [12], [19], [21],[23]). These semantic frame-
works form the backbone for the DLV solver (cf. [15]), renowned for its imple-
mentation in disjunctive logic programming (DLP). Furthermore, intuitionistic
temporal logic contributes significantly to the logical characterization of safety
and liveness properties (cf. [18]).

The decidability problems of intuitionistic tense logic and its extensions are
long-time open problems. In [9], Ewald initially demonstrated the decidability
of IKt through the finite model property. However, Simpson later refuted
this result in [27]. Various attempts have been made to deal with this gap.
Several weakenings of intuitionistic tense logic are proven to be decidable. The
intuitionistic modal logic given by Simpson can be conservatively extended to
Ewald’s system, and some results on intuitionistic tense logic are found in the
literature. For example, some extensions of IK shown in Figure 7-5 [27] are
decidable. The decidability of extensions like IK4, and IKD4 are still unknown.
De Paiva showed a weaker version of IS4 called CS4 which doesn’t satisfy the
distributivity of 3 over ∨ i.e. 3(α ∨ β)⇒ 3α ∨3β is decidable [7]. Recently,
Lutz Straßburger proved that IS4 is decidable [13], but this result can not
be adapted to the tense version directly. The well-known intuitionistic modal
logic MIPC, has been established as decidable in [3]. For intuitionistic tense
logics, [16] showed that the disjunction-free fragment of IKt exhibits the FMP,
thereby rendering it decidable. [17,24] provided another kind of weakening
on dual modalities is decidable. [28] showed the cut elimination of this weak
variant.

Horn clauses have been considered the basic content and provide many
useful properties in computer science and artificial intelligence. These clauses
are logical formulas of a particular rule-like form. The Horn clause discussed
in [4] has the following form:

α1 ∧ · · · ∧ αk ∧ ¬αk+1 ∧ · · · ∧ ¬αn → β1 ∨ · · · ∨ βm

where αi (1 ≤ i ≤ n) and βj (1 ≤ j ≤ m) are atomic formulas. One may
consider the modal extension of such formulas. This can be possibly achieved
under the language of intuitionistic tense logic with such tense or temporal
operators. Inspired by the modal Horn clause defined in [5], we extend Horn
classes to intuitionistic tense cases. An intuitionistic tense Horn clause is

α1 ∨ · · · ∨ αn → β1 ∨ · · · ∨ βm

where αi (1 ≤ i ≤ n) and βj (1 ≤ j ≤ m) are formulas under connectives
¬,→,∧,■,2,3,♦. An intuitionistic tense Horn clause program is a finite set
of such clauses [11].
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In this paper, we consider the decidability of intuitionistic tense Horn se-
quent (cf. Section 3) over IS4t. IS4t is one of the most important and widely
studied intuitionistic tense logic in literature. Moreover, the decidability of the
general theory of IS4t remains unknown. Further, according to applications,
one natural and interesting question is whether intuitionistic tense Horn se-
quent is decidable in IS4t. We show that some restricted sequents (formulas)
are decidable in IS4t by proving finite model property, which yields the de-
cidability of intuitionistic tense Horn sequent of IS4t. Surely this result only
provides a partial answer to the open problem but this is still a beneficial sup-
plement. The study of the finite model property (FMP) for intuitionistic modal
logic has a long tradition. H.Ono [22] and G.S.Fischer [25] showed the FMP
of the well-known MIPC and some results over MIPC were also reached [1].
F.Wolter and M.Zakhariaschev [29] showed that some K4 extensions of a basic
intuitionistic tense logic, i.e. 3,♦,2,■ satisfying the relations: α→ 2♦α and
α → ■3α have FMP and thus decidable. W.Dzik, J.Järvinen, and M.Kondo
addressed the problem of FMP of intuitionistic propositional logic with Galois
connections [8]. P.Balbiani and M.Diéguez [2] proved that both the temporal
here and there (THT) and its intuitionistic variants (ITLp) have FMP.

This paper is organized as follows. Section 2 gives some preliminaries of
algebra and sequent calculus with soundness and completeness proved. Section
3 proves the FMP about the restricted set of formulas i.e. the so-called Horn
sequents. Section 4 gives some concluding remarks.

2 Algebra and Calculus

In this section, we give some algebraic and logical preliminaries.

Definition 1 ([10]) An intuitionistic tense algebra (IKt-algebra for short) is
a structure A = (A,∧,∨,→,3,2,♦,■, 0, 1), where A = (A,∧,∨,→, 0, 1) is
a Heyting algebra, and 3,2,♦,■ are unary operators on A satisfying the
following conditions: for all a, b ∈ A,
(t1) 21 = 1 and ■1 = 1.
(t2) 2(a ∧ b) = 2a ∧2b and ■(a ∧ b) = ■a ∧■b.
(t3) a ≤ ■3a and a ≤ 2♦a.
(t4) 30 = 0 and ♦0 = 0.
(t5) 3(a ∨ b) = 3a ∨3b and ♦(a ∨ b) = ♦a ∨ ♦b.
(t6) 3■a ≤ a and ♦2a ≤ a.
(t7) 3(a→ b) ≤ 2a→ 3b and ♦(a→ b) ≤ ■a→ ♦b.

An IS4t-algebra is obtained from IKt-algebra by adding ♯a ≤ ♯♯a and ♯a ≤ a
where ♯ ∈ {2,■}.
Definition 2 The set of all formulas F is defined inductively as follows:

F ∋ α ::= p | ⊤ | ⊥ | (α1 → α2) | (α1 ∧ α2) | (α1 ∨ α2) | 3α | 2α | ♦α | ■α

where p ∈ Var = {pi : i < ω}, a denumerable set of variables. We use the
abbreviation ¬α := α → ⊥. Formulas belong to Atom = Var ∪ {⊥,⊤} are
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called atomic. The complexity of a formula α, denoted by c(α), is defined as
usual. Let Sub(α) be the set of all subformulas of α. For a set of formulas Γ,
let Sub(Γ) =

⋃
α∈Γ Sub(α). A substitution is a homomorphism σ : F → F .

Definition 3 Let the comma, ◦ and • be structural counterparts for ∧, 3 and
♦ respectively. The set of all formula structures FS is defined inductively as
follows:

FS ∋ Γ ::= α | (Γ1,Γ2) | ◦Γ | •Γ

Let FSϵ = FS ∪{ϵ} where ϵ stands for the empty formula structure. By f(Γ)
we denote the formula obtained from Γ by replacing all structure operators
with their corresponding formula connectives. A sequent is an expression of
the form Γ⇒ β where Γ ∈ FSϵ is a formula structure and β ∈ F is a formula.

Definition 4 Let − be the symbol called the position. A context Γ[−] is a
formula structure Γ ∈ FSϵ together with a designated position [−] which can
be filled with a formula structure. The set of all contexts C is defined inductively
as follows:

C ∋ Γ[−] ::= − | (Γ1[−],Γ2) | (Γ1,Γ2[−]) | ◦Γ[−] | •Γ[−]
Example 5 Let expression Γ[−] = ◦5 •10 ((−, q), p ∧ q) be a context with
position −. If we replace the formula structure ∆ = •(p, (q, ◦q)) for the position
− in Γ[−], we get the formula structure Γ[∆] = ◦5 •10 ((•(p, (q, ◦q)), q), p ∧ q).
Definition 6 The sequent calculus GIS4t consists of the following axiom
schemata and sequent rules: for i ∈ {1, 2} and ⋆ ∈ {◦, •},
(1) Axiom schemata:

(Id) α⇒ α

(2) Logical rules:

Γ[⊤]⇒ β

Γ[∆]⇒ β
(⊤) ∆⇒ ⊥

Γ[∆]⇒ β
(⊥) Γ[α1, α2]⇒ β

Γ[α1 ∧ α2]⇒ β
(∧L) Γ⇒ β1 Γ⇒ β2

Γ⇒ β1 ∧ β2
(∧R)

Γ[α1]⇒ β Γ[α2]⇒ β

Γ[α1 ∨ α2]⇒ β
(∨L) Γ⇒ βi

Γ⇒ β1 ∨ β2
(∨R)

∆⇒ α1 Γ[α2]⇒ β

Γ[∆, α1 → α2]⇒ β
(→L)

β1,Γ⇒ β2
Γ⇒ β1 → β2

(→R)

(3) Tense rules:

Γ[◦α]⇒ β

Γ[3α]⇒ β
(3L)

Γ⇒ β

◦Γ⇒ 3β
(3R)

Γ[•α]⇒ β

Γ[♦α]⇒ β
(♦L) Γ⇒ β

•Γ⇒ ♦β (♦R)

Γ[α]⇒ β

Γ[◦■α]⇒ β
(■L)

◦Γ⇒ β

Γ⇒ ■β (■R)
Γ[α]⇒ β

Γ[•2α]⇒ β
(2L)

•Γ⇒ β

Γ⇒ 2β
(2R)
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(4) Structural rules:

Γ[◦∆1, ◦∆2]⇒ β

Γ[◦(∆1,∆2)]⇒ β
(Con◦)

Γ[•∆1, •∆2]⇒ β

Γ[•(∆1,∆2)]⇒ β
(Con•)

Γ[α, α]⇒ β

Γ[α]⇒ β
(ConF)

Γ[∆i]⇒ β

Γ[∆1,∆2]⇒ β
(Wk)

Γ[∆1,∆2]⇒ β

Γ[∆2,∆1]⇒ β
(Ex)

Γ[◦(•∆1,∆2)]⇒ β

Γ[∆1, ◦∆2]⇒ β
(K◦•)

Γ[•(◦∆1,∆2)]⇒ β

Γ[∆1, •∆2]⇒ β
(K•◦)

Γ[⋆α]⇒ β

Γ[α]⇒ β
(T⋆)

Γ[⋆α]⇒ β

Γ[⋆ ⋆ α]⇒ β
(4⋆)

(5) Cut rule:
∆⇒ α Γ[α]⇒ β

Γ[∆]⇒ β
(Cut)

Fact 7 The following sequent rules are admissible in GIS4t:

α1 ⇒ β1 α2 ⇒ β2
α1 ∧ α2 ⇒ β2 ∧ β2

(∧) α1 ⇒ β1 α2 ⇒ β2
α1 ∨ α2 ⇒ β2 ∨ β2

(∨)

α⇒ βα ⇒ β

α→ β ⇒ α→ β
(→)

Γ[∆,∆]⇒ β

Γ[∆]⇒ β
(Con)

α⇒ β

♭α⇒ ♭β
(Mon)(♭ ∈ {3,2,♦,■})

Γ[∆1, (∆2,∆3)]⇒ β

Γ[(∆1,∆2),∆3]⇒ β
(As1)

Γ[(∆1,∆2),∆3]⇒ β

Γ[∆1, (∆2,∆3)]⇒ β
(As2)

Proposition 8 The following sequents are derivable in GIS4t:

(1) 2⊤ ⇔ ⊤ and ■⊤ ⇔ ⊤.
(2) 2(α ∧ β)⇔ 2α ∧2β and ■(α ∧ β)⇔ ■α ∧■β.
(3) α⇒ ■3α and α⇒ 2♦α.
(4) 3⊥ ⇔ ⊥ and ♦⊥ ⇔ ⊥.
(5) 3(α ∨ β)⇔ 3α ∨3β and ♦(α ∨ β)⇔ ♦α ∨ ♦β.
(6) 3■α⇒ α and ♦2α⇒ α.
(7) 3(α→ β)⇒ 2α→ 3β and ♦(α→ β)⇒ ■α→ ♦β.
(8) 2α⇒ 22α and ■α⇒ ■■α.
(9) 2α⇒ α and ■α⇒ α.

Proof. We only show the proofs of following cases:
(1)

2⊤ ⇒ 2⊤
(⊤)⊤ ⇒ 2⊤

⊤ ⇒ ⊤
(⊤)

2⊤ ⇒ ⊤
(2)
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α⇒ α
(∧L)

α ∧ β ⇒ α
(Mon)

2(α ∧ β)⇒ 2α

β ⇒ β
(∧L)

α ∧ β ⇒ β
(Mon)

2(α ∧ β)⇒ 2β
(∧R)

2(α ∧ β)⇒ 2α ∧2β

α⇒ α
(2L)•2α⇒ α

(Wk)•2α, •2β ⇒ α

β ⇒ β
(2L)•2β ⇒ β

(Wk)•2α, •2β ⇒ β
(∧R)•2α, •2β ⇒ α ∧ β

(Con•)•(2α,2β)⇒ α ∧ β
(2R)

2α,2β ⇒ 2(α ∧ β)
(∧R)

2α ∧2β ⇒ 2(α ∧ β)
(3)

α⇒ α
(Mon)◦α⇒ 3α
(■R)

α⇒ ■3α

(4)

⊥ ⇒ ⊥
(⊥)◦⊥ ⇒ ⊥
(3L)

3⊥ ⇒ ⊥
⊥ ⇒ ⊥

(⊥)⊥ ⇒ 3⊥
(5)

α⇒ α
(3R)◦α⇒ 3α

(∨R)◦α⇒ 3α ∨3β

β ⇒ β
(3R)◦β ⇒ 3β

(∨R)◦β ⇒ 3α ∨3β
(∨L)

◦(α ∨ β)⇒ 3α ∨3β
(3L)

3(α ∨ β)⇒ 3α ∨3β

α⇒ α
(∨R)

α⇒ α ∨ β
(3R)

◦α⇒ 3(α ∨ β)
(3L)

3α⇒ 3(α ∨ β)

β ⇒ β
(∨R)

β ⇒ α ∨ β
(3R)

◦β ⇒ 3(α ∨ β)
(3L)

3β ⇒ 3(α ∨ β)
(∨L)

3α ∨3β ⇒ 3(α ∨ β)
(6)

α⇒ α
(■L)◦■α⇒ α
(3L)

3■α⇒ α
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(7)

α⇒ βα ⇒ β
(→L)

α, α→ β ⇒ β
(3R)

◦(α, α→ β)⇒ 3β
(2L)

◦(•2α, α→ β)⇒ 3β
(K◦•)

2α, ◦(α→ β)⇒ 3β
(3L)

2α,3(α→ β)⇒ 3β
(→L)

3(α→ β)⇒ 2α→ 3β

(8)

α⇒ α
(2L)•2α⇒ α
(4⋆)• •2α⇒ α
(2R)

2α⇒ 22α

(9)

α⇒ α
(2L)•2α⇒ α
(T⋆)2α⇒ α

2

Theorem 9 GIS4t are sound and complete w.r.t. IS4t, the variety of IS4ts.

Proof. The soundness proceeds by the induction on the height of derivation.
For completeness result, it suffices to show that for any sequent Γ ⇒ β, if
̸⊢ Γ ⇒ β, then ̸|= Γ ⇒ β. It can be proved by standard construction. Let
JαK = {β| ⊢ α ⇔ β}. Let A be the set of all JαK. One defines {∧′,∨′,→′

, P, F,⊤′,⊥′} on A as follows:

Jα1K∧′ Jα2K = Jα1 ∧ α2K Jα1K∨′ Jα2K = Jα1 ∨ α2K Jα1K→′ Jα2K = Jα1 → α2K

F JαK = J3αK P JαK = J■αK ⊤′ = J⊤K ⊥′ = J⊥K
The order is defined as Jα1K ≤′ Jα2K iff Jα1K ∧′ Jα2K = Jα1K. Thus Jα1K ≤′

Jα2K iff ⊢ α1 ⇒ α2. Define an assignment σ : Var → A such that σ(p) = [p].
By induction on the complexity of the formula, one shows that σ̂(α) = JαK for
any formula α. Suppose that |= Γ ⇒ β. Then σ̂(Γ) ≤ σ̂(β). Hence ⊢ Γ ⇒ β,
which yields a contradiction. This completes the proof. 2

Lemma 10 The following hold in cut-free GIS4t:

(1) If ⊢ Γ[α1 ∧ α2]⇒ β, then ⊢ Γ[α1, α2]⇒ β.
(2) If ⊢ Γ[α1 ∨ α2]⇒ β, then ⊢ Γ[α1]⇒ β and ⊢ Γ[α2]⇒ β.
(3) If ⊢ Γ[3α]⇒ β, then ⊢ Γ[◦α]⇒ β.
(4) If ⊢ Γ[♦α]⇒ β, then ⊢ Γ[•α]⇒ β.

Proof. The proof proceeds by the induction on the height of derivation n.
We only show the proof of (1). Assume ⊢ Γ[α1 ∧ α2] ⇒ β. Let n = 0, i.e.,
α1 ∧ α2 ⇒ α1 ∧ α2. Clearly, one has ⊢ α1, α2 ⇒ α1 ∧ α2. Assume n > 0.
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If α1 ∧ α2 is principal in (R), then (R) is (∧L) or (⊤) or (⊥). For (∧L),
one has ⊢n Γ[α1, α2] ⇒ p simply by the premise. For other cases, one has
⊢n Γ[α1, α2]⇒ p by (R) on its premise. If α1 ∧α2 is not principal in (R), then
one has ⊢n Γ[α1, α2]⇒ p by induction hypothesis and rule (R). 2

Theorem 11 (Cut-elimination) GIS4t enjoys the cut elimination.

Proof. The proof can be checked in [16,17,28], which shows the cut elimination
of weak intuitionistic tense logic. The proof method is quite similar. 2

Corollary 12 GIS4t enjoys the subformula property.

3 Decidability of Horn Sequent

In this section, we consider a set of restricted sequents RS i.e. so-called Horn
sequents which are constituted by formulas where the disjunctions are not
included in the implications or box (including 2 and ■) connectives. For
instance, sequents like ■((α ∧ β) ∨ γ) ⇒ γ, α ∨ β → γ ⇒ γ ∨ α don’t belong
to such a set. On the contrary, general Horn clauses are certainly examples of
such sequents. We will show that for any sequents in RS, if it is not derivable
in GIS4t, then there exists a finite IS4t algebra refuting it. Thus by [14], all
kinds of such sequents in RS and Horn sequent are decidable.

We now construct some special sets of formulas. Let T be a set of formulas
satisfying that disjunctions are not included in the implications or box connec-
tives and closed under subformulas. Let T# be the ∧,→ closure of T and T be
the ∧,∨ closure of T#. Clearly there is no formulas containing ∨ included in
→ or ■,2. Moreover, if T is finite then T# is finite up to equivalence relations
⇔. Hence T is finite up to equivalence.

Given a sequent Γ[[∆1[Σ11] . . . [Σ1m1 ]] . . . [∆n[Σn1] . . . [Σnmn ]]]⇒ β satisfy-
ing that there is no formulas of the form α1 ∨ α2 contained in any Σij ⇒ θij
where 1 ≤ i ≤ n, 1 ≤ j ≤ max(m1, . . . ,mn). Let T containing ⊥,⊤ be the set
of all subformulas of formulas in this sequents.

Lemma 13 If ⊢ Γ[[∆1[Σ11] . . . [Σ1m1
]] . . . [∆n[Σn1] . . . [Σnmn

]]] ⇒ β, then
there are γi, θij ∈ T# such that ⊢ Σij ⇒ θij where 1 ≤ i ≤ n, 1 ≤ j ≤
max(m1, . . . ,mn), ⊢ ∆i[θi1] . . . [θimi ]⇒ γi, and ⊢ Γ[γ1] . . . [γi]⇒ β.

Proof. We proceed by induction on the length of the cut-free proof. Suppose
that the sequent is ended by rule (R). One suffices to show that any structure
considered here has an interpolant γ. Thus without loss of generality, we only
display one structure ∆. Assume that ⊢ Γ′[∆] ⇒ β and ended by rule (R).
If (R) is the right rule, then the claim is held by induction hypothesis and
(R). Let (R) be a left rule. For instance, let (R) be (K◦•) (Other cases can
be treated similarly). Assume that the premise is Γ′′[◦(Σ1, •Σ2)]⇒ α and the
conclusion is Γ′′[Σ1, ◦Σ2] ⇒ α. Let ∆ = ◦Σ2. Then by induction hypothesis,
one obtains ⊢ Σ1 ⇒ γ1, ⊢ ◦(γ2, •Σ2)⇒ γ1 and ⊢ Γ′′[γ1]⇒ α where γ1, γ2 ∈ T#.
Then by (K◦•) and (→R), one gets ⊢ •Σ2 ⇒ γ1 → γ2. Moreover by (→L),
one gets ⊢ Γ′′[γ1, γ1 → γ2] ⇒ α. Hence ⊢ Γ′′[Σ1, γ1 → γ2] ⇒ α. Since
γ1 → γ2 ∈ T#. Thus γ1 → γ2 is the required interpolant. Let (R) be (∨L).
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Clearly the principal formula α1 ∨ α2 can not contained in ∆. Assume that
the premises are ⊢ Γ′′[α1][∆] ⇒ α and ⊢ Γ′′[α2][∆] ⇒ α. Then by induction
hypothesis there are γ1, γ2 such that ⊢ ∆ ⇒ γj and ⊢ Γ′′[αi][γj ] ⇒ α where
i, j ∈ {1, 2}. Thus ⊢ ∆ ⇒ γ1 ∧ γ2 and ⊢ Γ′′[α1 ∨ α2][γ1 ∧ γ2] ⇒ α. Since
γ1 ∧ γ2 ∈ T#, it is the desired interpolant. 2

Definition 14 [Order on sf(T )] Define ≤ on sf(T ) as follows: ∆1 ≤ ∆2 iff for
any α ∈ T , if ⊢GIS4t Γ[∆2] ⇒ α, then ⊢GIS4t Γ[∆1] ⇒ α where Γ[∆1],Γ[∆2] ∈
sf(T ) and α ∈ T .

Let ∆1 ∼ ∆2 be ∆1 ≤ ∆2 and ∆2 ∼ ∆1, then clearly ∼ is an equivalence
relation. Let JαK := {∆ ∈ sf(sf(T ))|α ∼ ∆} for any α ∈ sf(T ).

Lemma 15 Let T be a finite set containing ⊤,⊥ and closed under subformula.
Define |T#| = {JαK : α ∈ T#} and |T | = {JαK : α ∈ T}, then both |T | and |T#|
are finite.

Proof. Since T is finite, |T#| = {JαK : α ∈ T#} is finite. [20] showed that the
variety of implicative semi-lattice is locally finite. Thus K generated by |T#| is
finite. Because the domain of K is |T#| = {JαK : α ∈ T#}, hence |T#| is finite.
Therefore, |T | is finite by construction. 2

For the rest of the paper, we let T# and T be constructed from a finite
formula set.

Lemma 16 For any α ∈ T#, there is β ∈ T# s.t. ⋆α ∼ β where ⋆ ∈ {◦, •}.
Proof. Suppose that ⊢ Γ[⋆α] ⇒ θ. Then by Lemma 13, there is a γ ∈ T#

such that ⊢ ⋆α ⇒ γ and ⊢ Γ[γ] ⇒ θ. Since |T#| is finite, let {γ1, . . . , γn}
be the set of all interpolants for all Γ′[−] and θ such that ⊢ Γ[⋆α] ⇒ θ. Let
β = γ1 ∧ . . . ∧ γn. Then β ∈ T#. Clearly by (∧R) and (∧L), one has (1)
⊢ ⋆α ⇒ β and (2) ⊢ Γ[β] ⇒ θ. From (2) one has β ≤ ⋆α. Suppose that
⊢ Γ[β] ⇒ π for any π. Applying (Cut) to (1) and the assumption, one has
⊢ Γ[⋆α]⇒ π. Hence ⋆α ≤ β. 2

Corollary 17 For any α ∈ T , there is β ∈ T s.t. ⋆α ∼ β where ⋆ ∈ {◦, •}.
Definition 18 [Quotient algebra] The quotient algebra of T is a structure
Q = (|T |, f∧, f∨, f→, f3, f♦, f2, f■, f0, f1), where: for any JαK, JβK ∈ |T |,

(i) JαKf∧JβK = Jα∧βK.
(ii) JαKf∨JβK = Jα ∨ βK.
(iii) JαKf→JβK = Jγ1 ∨ . . . ∨ γnK where γi ∈ T s.t. JαKf∧JγiK ≤ JβK for any

i ∈ {1, . . . n}.
(iv) f0 = J⊥K.
(v) f1 = J⊤K.
(vi) f3JαK = JγK where γ ∈ T s.t. γ ∼ ◦α.
(vii) f♦JαK = JγK where γ ∈ T s.t. γ ∼ •α.
(viii) f2JαK = Jγ1 ∨ . . . ∨ γnK where γi ∈ T s.t. f♦JγiK ≤ JαK for any i ∈

{1, . . . n}.
(ix) f■JαK = Jγ1 ∨ . . . ∨ γnK where γi ∈ T s.t. f3JγiK ≤ JαK for any i ∈

{1, . . . n}.
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One can easily check that Q is well-defined. The order of Q is defined by
f∧ as: JαK ≤ JβK iff JαKf∧JβK = JαK.
Lemma 19 ⊢ α⇒ β iff JαK ≤ JβK where α, β ∈ T .
Proof. Assume that ⊢ α⇒ β. Then ⊢ α⇔ α∧β. Thus JαK ≤ JβK. Conversely
let JαK ≤ JβK. Then α∧β ∼ α. Clearly ⊢ α∧β ⇒ β. Hence ⊢ α⇒ β. 2

Lemma 20 The following conditions hold for Q: for any JαK, JβK and JγK ∈
|T |,

(i) f3(JαK ∨ JβK) = f3JαK ∨ f3JβK and f♦(JαK ∨ JβK) = f♦JαK ∨ f♦JβK.
(ii) f3f0 = f0 and f♦f0 = f0.
(iii) f3f3JαK ≤ f3JαK and JαK ≤ f3JαK
(iv) f♦f♦JαK ≤ f♦JαK and JαK ≤ f♦JαK
(v) f3JαK ≤ JβK iff JαK ≤ f■JβK.
(vi) f♦JαK ≤ JβK iff JαK ≤ f2JβK.
(vii) f3JαK ∧ JβK ≤ f3(JαK ∧ f♦JβK) and f♦JαK ∧ JβK ≤ f♦(JαK ∧ f3JβK).
Proof. We only provide proof of (i). Let f3JαK = Jγ1K, f3JβK = Jγ2K and
f3Jα ∨ βK = Jγ3K where γ1, γ2, γ3 ∈ T . Let ⊢ γ3 ⇒ θ. Then ⊢ ◦(α ∨ β) ⇒ θ.
By Lemma 10, ⊢ ◦α⇒ θ and ⊢ ◦β ⇒ θ. Hence ⊢ γ1 ⇒ θ and ⊢ γ2 ⇒ θ. Thus
by (∨L), one has ⊢ γ1∨γ2 ⇒ θ. Hence by Lemma 19, Jγ3K ≤ Jγ1 ∨ γ2K, whence
f3Jα ∨ βK ≤ f3JαK ∨ f3JβK. Similarly f3JαK ∨ f3JβK ≤ f3Jα ∨ βK. The proof
for the second equality is analogous and hence is omitted. 2

Theorem 21 Q is a finite IS4t.

Proof. By Lemma 15 and Lemma 20. 2

Lemma 22 Let α∧β, α→ β, 3α, ♦α, 2α, ■α, ⊥, ⊤ ∈ T , then the following
equations hold:

(i) Jα ∧ βK = JαKf∧JβK.
(ii) Jα→ βK = JαKf→JβK.
(iii) J⊥K = f0 and J⊤K = f1.
(iv) J3αK = f3JαK and J♦αK = f♦JαK.
(v) J2αK = f2JαK and J■αK = f■JαK.

Proof. We only provide proofs for (v). Clearly ⊢ ◦■α⇒ α. Hence, f3J■αK ≤
JαK. Thus J■αK ≤ f■JαK by Lemma 20 (iii). Conversely let γ1, . . . , γn ∈ T#

and f■JαK = Jγ1 ∨ . . . ∨ γnK where f3JγiK ≤ α. Then ⊢ ◦γi ⇒ α for all
1 ≤ i ≤ n. Hence by (■R) and (∨L), one gets ⊢ γ1∨ . . .∨γn ⇒ ■α. Therefore,
f■JαK ≤ J■αK since ■α ∈ T ⊆ T . 2

Lemma 23 (FMP) For any RS-sequent α⇒ β, if ̸⊢ α⇒ β, then there exits
a finite IS4t-algebra Q, such that ̸|=Q α⇒ β.

Proof. Let T be the set of all subformulas of α and β. Let T# be the ∧,→-
closure of T . Obviously, T# is closed under subformulas. Define T as above.
Let σ : T → |T | be defined as σ(p) = JpK for all p ∈ Var ∩ T . By induction on
the complexity of formula, Lemma 22 implies that σ(γ) = JγK for any γ ∈ T .
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Let Q be constructed as above and hence Q is finite. Assume |=Q α⇒ β which
implies that |=Q σ(α) ≤ σ(β). By Theorem 9, ⊢ α⇒ β. 2

Theorem 24 Any sequents of RS of IS4t is decidable.

4 Concluding Remarks

This paper contributes a decidable result of some particular form of formulas
in intuitionistic tense logic S4. Certainly, this result might be extended to
various variants of intuitionistic tense or modal logic, especially those whose
decidability problems are still open.
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Model Theoretic Aspects of Modal Logic with
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Abstract

In this paper, we investigate the model theoretic aspects of modal logic with counting
ML(#) and its variants. First of all, we show that for any natural number n, there is
an ML(#)-formula ϕ that is satisfied only on models of size at least ℵn. Additionally,
we prove that ML(#) with infinitely many propositional variables is not compact, nor
is ML(#) with no variable and arbitrary depth. Furthermore, we present an exam-
ple demonstrating the failure of interpolation for graded modal logic with counting
GML(#) with respect to image-finite frames and finite frames. Finally, we give a
proof of the Halldén completeness for the shallow fragment of ML(#) with respect to
serial image-finite frames.

Keywords: modal logic with counting, compactness, interpolation, Halldén
completeness

1 Introduction

The reasoning exhibited by individuals in their daily lives can be both qualita-
tive and quantitative. Typically, logic pertains more to the qualitative aspect,
while arithmetic/counting are more aligned with the quantitative aspect. Giv-
en that human reasoning often involves an interplay between qualitative and
quantitative information, it becomes compelling to investigate the integration
of logics with counting mechanisms. Specifically, comparisons between cardi-
nalities represent interesting numerical information that frequently appears in
daily reasoning.
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In the existing literature, various works have explored the combination of
cardinality comparisons with first-order logic [1,5,7,8]. However, the resulting
logics are often of very high complexity and are typically not axiomatizable.
This complexity makes it valuable to examine smaller languages, such as propo-
sitional logic with cardinality comparison formulas [3], monadic first-order logic
with counting, modal logic with counting (ML(#)) [10], and modal logics with
Presburger constraints [2]. These simpler logics, with their lower complexity,
are particularly promising for applications in automated reasoning.

For AI, incorporating both qualitative and quantitative reasoning enhances
the system’s ability to emulate human-like decision-making processes. By the
use of simpler logics with integrated counting mechanisms, AI can achieve
more sophisticated and efficient reasoning capabilities. This advancement can
significantly improve AI’s performance in various complex tasks, making it a
valuable area of research in the field of AI reasoning.

In this paper, we investigate some model-theoretic properties of ML(#) and
its variants. First of all, we show that for any natural number n, there is an
ML(#)-formula ϕ that is satisfied only on models of size at least ℵn. Addition-
ally, we show that ML(#) is not compact by using the well-foundedness of sets
of cardinal numbers. We also prove that GML(#) with respect to image-finite
frames and finite frames do not have interpolation. Finally, we provide a proof
that the shallow fragment of ML(#) on the class of serial image-finite frames
has Halldén completeness.

The structure of the paper is as follows: Section 2 gives the preliminaries
of ML(#). Section 3 shows that for any natural number n, there is an ML(#)-
formula ϕ that is satisfied only on models of size at least ℵn. Section 4 proves
that ML(#) is not compact by using the well-foundedness of sets of cardinal
numbers. Section 5 proves that GML(#) with respect to image-finite frames
and finite frames do not have interpolation. In Section 6, we give the proof of
that the shallow fragment of ML(#) on the class of serial image-finite frames
has Halldén completeness. Section 7 gives conclusions.

2 Preliminaries

In the present section, we give preliminaries on the ML(#). For more details,
see Section 7 in [10].

Syntax Given a countable set Prop of propositional variables, we define the
formulas and numerical terms of ML(#) as follows:

formulas: p | ⊥ | > | ¬ϕ | ϕ ∧ ψ | #ϕ % #ψ
numerical terms: #ϕ

where p ∈ Prop. We use standard abbreviations for ∨,→,↔. We use p to
denote a tuple of propositional variables like (p1, . . . , pn).

Definition 2.1 [Counting depth] The counting depth of formulas is defined
recursively as follows:

• d(p) = d(⊥) = d(>) = 0;
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• d(¬ϕ) = d(ϕ);

• d(ϕ ∧ ψ) = max{d(ϕ), d(ψ)};
• d(#ϕ % #ψ) = max{d(ϕ), d(ψ)}+ 1.

In Section 6, we will make use of the following definition of shallow formulas,
which will be used to define subsets of natural numbers:

Definition 2.2 [Shallow formulas] We say that an ML(#)-formula is shallow
if it is a Boolean combination of formulas of the form #ϕ % #ψ where ϕ,ψ are
of counting depth 0.

Semantics ML(#)-formulas are interpreted on Kripke frames F = (W,R)
where W 6= ∅ is the domain and R is a binary relation on W . A Kripke model
is a tuple M = (F, V ) where V : Prop → P(W ) is a valuation on W . We use
Rs = {t : Rst} to denote the set of successors of s. A Kripke frame is:

• finite, if W is finite;

• image-finite, if Rs is finite for every s ∈W ;

• serial, if Rs is non-empty for every s ∈W .

We use JϕKM to denote the set of worlds in M where ϕ is true. The satisfac-
tion relation for the basic case and Boolean connectives are defined as usual.
For numerical terms,

J#ϕKM,s = |Rs ∩ JϕKM|,
i.e. J#ϕKM,s is the number of successors of s where ϕ is true.
For cardinality comparison formulas,

M, s  #ϕ % #ψ iff J#ϕKM,s ≥ J#ψKM,s

i.e. #ϕ % #ψ is true at s if more (or the same number of) R-successors of
s make ϕ true than making ψ true.

Some abbreviations We define the following abbreviations:

• #ϕ � #ψ is defined as (#ϕ % #ψ) ∧ ¬(#ψ % #ϕ);

• #ϕ = #ψ is defined as (#ϕ % #ψ) ∧ (#ψ % #ϕ);

• The standard modality 3ϕ is defined as #ϕ � #⊥;

• 2ϕ is defined as ¬3¬ϕ.

Proposition 2.3 The following equivalences hold on the basis of the semantics
of #ϕ % #ψ:

• M, s  #ϕ � #ψ iff J#ϕKM,s > J#ψKM,s;
• M, s  #ϕ = #ψ iff J#ϕKM,s = J#ψKM,s;
• M, s  3ϕ iff J#ϕKM,s > 0 iff there exists t ∈W such that Rst and M, t  ϕ;

• M, s  2ϕ iff for any t ∈W such that Rst, we have M, t  ϕ.

Propositional quantifiers In the present paper, we will use existential
propositional quantifiers of the form ∃p (where p is a propositional variable) to
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talk about the existence of a valuation such that a certain ML(#)-formula is
satisfiable under this valuation.

We use V pX to denote a valuation which is the same as V except that V pX(p) =
X ⊆W . The additional satisfaction relation clauses are defined as follows:

M, w  ∀pϕ iff for all X ⊆W , (W,R, V pX), w  ϕ;
M, w  ∃pϕ iff there exists X ⊆W such that (W,R, V pX), w  ϕ.

Graded modal logic with counting GML(#) In graded modal logic [11,6],
we have graded modalities 3≥nϕ for each positive natural number n, intuitively
reads “there are at least n successors satisfying ϕ”. It is natural to consider
the graded extension of modal logic with counting GML(#). The following
abbreviations are used:

• 3≤nϕ is defined as ¬3≥n+1ϕ;

• 3=nϕ is defined as 3≥nϕ ∧3≤nϕ.

For counting depth, we define d(3≥nϕ) = d(ϕ) + 1.
For the semantics of 3≥nϕ,

M, s  3≥nϕ iff J#ϕKM,s ≥ n.
The Power of definability of ML(#) We briefly recall the results in [4]
which will be used in Section 6 on Halldén completeness. Here N denotes the
set of natural numbers.

Definition 2.4 Given a subset X ⊆ N, a shallow ML(#)-formula ϕ with all
propositional variables occurring in p defines X if for all image-finite pointed
Kripke frames (F, s),

F, s  ∃pϕ iff |Rs| ∈ X.
The characterization of definable subsets will make use of the following two

definitions:

Definition 2.5 [Semilinear sets] A subset X ⊆ N is said to be linear if it is
of the form X = {a + b1 · x1 + . . . + bn · xn | x1, . . . , xn ∈ N} for some fixed
a, b1, . . . , bn ∈ N. A subset X ⊆ N is said to be semilinear if it is a finite union
of linear subsets.

Definition 2.6 We say that a subset X ⊆ N is closed under taking multiples,
if for any n ∈ X and 2 ≤ m ∈ N, we have that m · n ∈ X.

The characterization theorem of definable subsets of natural numbers is
given as follows:

Theorem 2.7 (Section 4 in [4]) For any subset X ⊆ N, X is definable by a
shallow ML(#)-formula iff it is semilinear and closed under taking multiples.

3 Model size

In this section, we show that for any natural number n, there is an ML(#)-
formula ϕ that is satisfied only on models of size at least ℵn.

   Model  Theoretic  Aspects  of  Modal  Logic  with  Counting

107



3.1 Formula that only has models of size at least ℵ0
Proposition 3.1 (Proposition 6 in [4]) F, s  ∃p((#p = #>) ∧ 3¬p) iff
|Rs| ≥ ℵ0.

Proof. (⇐): Suppose that in the pointed frame (F, s), s has infinitely many
successors. Then take t ∈ Rs, we can define a valuation V on F such that
V (p) = Rs − {t}. Then |Rs − {t}| = |Rs|, so |Rs ∩ JpKF,V,s| = |Rs ∩ J>KF,V,s|,
so F, V, s  #p = #>. Since F, V, t  ¬p, we have that F, V, s  3¬p. So
F, s  ∃p((#p = #>) ∧3¬p).

(⇒): Suppose F, s  ∃p((#p = #>) ∧ 3¬p). Then there is a valuation V
on F such that F, V, s  (#p = #>) ∧3¬p. So there is a successor t of s such
that F, V, t  ¬p and |Rs ∩ JpKF,V,s| = |Rs ∩ J>KF,V,s| = |Rs|. So Rs ∩ JpKF,V,s
is a proper subset of Rs with the same cardinality. So s has infinitely many
successors. 2

From this proof, we can see that if (#p = #>) ∧ 3¬p is satisfiable at
a model (M, s) = (W,R, V, s), then W,R, s  ∃p((#p = #>) ∧ 3¬p), so
|Rs| ≥ ℵ0, which forces the frame to have size at least ℵ0.

3.2 Formula that only has models of size at least ℵ1
By an argument similar to the previous part, we have the following proposition:

Proposition 3.2 (Proposition 7 in [4]) Suppose that p does not occur in ϕ.
Then M, s  ∃p((#(p ∧ ϕ) = #ϕ) ∧3(¬p ∧ ϕ)) iff J#ϕKM,s ≥ ℵ0.

We denote ∃p((#(p ∧ ϕ) = #ϕ) ∧3(¬p ∧ ϕ)) as ∃≥ℵ0ϕ.
Then we have the following result, which forces the number of successors

to be at least ℵ1:

Proposition 3.3 (Proposition 8 in [4]) F, s  ∃q∃r(∃≥ℵ0(q ∧ r) ∧ (#(q ∧
¬r) � #(q ∧ r))) iff |Rs| ≥ ℵ1.

Proof. (⇐): Suppose that in the pointed frame (F, s), s has at least ℵ1 suc-
cessors. Take disjoint X,Y ⊆ Rs such that |X| = ℵ0, |Y | = ℵ1, then define a
valuation V on F such that all points in X make q ∧ r true and all points in Y
make q∧¬r true. Then F, V, s  ∃≥ℵ0(q∧r) and F, V, s  #(q∧¬r) � #(q∧r),
So F, s  ∃q∃r(∃≥ℵ0(q ∧ r) ∧ (#(q ∧ ¬r) � #(q ∧ r))).

(⇒): Suppose F, s  ∃q∃r(∃≥ℵ0(q∧r)∧(#(q∧¬r) � #(q∧r))). Then there
is a valuation V on F such that F, V, s  ∃≥ℵ0(q ∧ r) and F, V, s  #(q ∧¬r) �
#(q ∧ r). Therefore, there are at least ℵ0 many successors of s satisfying q ∧ r
and the cardinality of s’ successors with q ∧ ¬r true is strictly larger than
the cardinality of those with q ∧ r true. Therefore there are at least ℵ1 many
successors of s with q ∧ ¬r true. So |Rs| ≥ ℵ1. 2

Since ∃q∃r(∃≥ℵ0(q ∧ r) ∧ (#(q ∧ ¬r) � #(q ∧ r))) is equivalent to
∃p∃q∃r(((#(p ∧ q ∧ r) = #(q ∧ r)) ∧3(¬p ∧ q ∧ r)) ∧ (#(q ∧ ¬r) � #(q ∧ r))),
so consider the ML(#)-formula

((#(p ∧ q ∧ r) = #(q ∧ r)) ∧3(¬p ∧ q ∧ r)) ∧ (#(q ∧ ¬r) � #(q ∧ r)),
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if it is satisfiable at a model (M, s) = (W,R, V, s), then |Rs| ≥ ℵ1, which forces
the frame to have size at least ℵ1.

3.3 Formulas that only have models of size at least ℵn
Now we are ready to define the formulas which only have models of size at least
ℵn, for any n ∈ N:

For any n ∈ N+, consider the smallest natural number k such that 2k ≥
n+ 1. For propositional variables p1, . . . , pk, list all the conjunctive clauses of
the form (¬)p1∧. . .∧(¬)pk as S1, . . . , S2k . It is easy to see that these conjunctive
clauses are pairwise inconsistent, and their disjunction is a tautology.

Now by an argument similar to Proposition 3.3, we have the following result:

Proposition 3.4 F, s  ∃p1 . . . ∃pk(∃≥ℵ0S1 ∧ (#Sn+1 � #Sn � . . . � #S1))
iff |Rs| ≥ ℵn.

Now since ∃p1 . . . ∃pk(∃≥ℵ0S1∧ (#Sn+1 � #Sn � . . . � #S1)) is equivalent
to ∃p∃p1 . . . ∃pk((#(p ∧ S1) = #S1) ∧ 3(¬p ∧ S1) ∧ (#Sn+1 � #Sn � . . . �
#S1)), consider the ML(#)-formula

(#(p ∧ S1) = #S1) ∧3(¬p ∧ S1) ∧ (#Sn+1 � #Sn � . . . � #S1),

if it is satisfiable at a model (M, s) = (W,R, V, s), then |Rs| ≥ ℵn, which forces
the frame to have size at least ℵn.

4 Failure of compactness

In Proposition 1 in [10], van Benthem and Icard show that first-order logic with
counting FO(#) lacks compactness, by an argument using the ability to define
∃∞x.ϕ stating that there are infinitely many x’s satisfying ϕ and consider the
set {∃≥nx.Px | n ∈ N} ∪ {¬∃∞x.Px}.

In the present section, we show that ML(#) is not compact when we have
infinitely many propositional variables, and even if we have no propositional
variable, if we allow arbitrary depth of formulas, then ML(#) is also not com-
pact. The basic proof strategy is to use the property of cardinal numbers that
sets of cardinal numbers are well-founded.

Theorem 4.1 Consider ML(#) with infinitely many propositional variables.
Then there are formulas {ϕi}i∈N such that they are finitely satisfiable but not
satisfiable together. Indeed, we can take all ϕi’s to be shallow formulas.

Proof. Consider the following formulas:
ϕ1 := #p1 � #p2;
ϕ2 := #p1 � #p2 � #p3;
ϕ3 := #p1 � #p2 � #p3 � #p4;
...
Then for any finitely many formulas ϕi1 , . . . , ϕik , suppose the largest index
is n, then their conjunction is equivalent to #p1 � #p2 � . . . � #pn+1.
Then consider the pointed Kripke model (M, w0) = (W,R, V,w0) where W =
{w0, . . . , wn+1}, R = {(w0, wi) | 1 ≤ i ≤ n+ 1}, V (pi) = {wj | i ≤ j ≤ n+ 1}.
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Then J#piKM,w0 = n+ 2− i and J#p1KM,w0 > J#p2KM,w0 > . . . > J#pn+1KM,w0 ,
so ϕi1 ∧ . . . ∧ ϕik is satisfiable.

However, if we consider {ϕi}i∈N, if this set is satisfiable, then there is a
pointed Kripke model (M, w0) such that J#p1KM,w0 > J#p2KM,w0 > . . ., which
means that there is an infinite descending chain of cardinal numbers, a contra-
diction.

Notice that in the formulas above, we only use shallow formulas, although
we use infinitely many propositional variables. 2

Indeed, if we use formulas of arbitrary finite depth, then even if we have no
propositional variable, the resulting fragment is already not compact, which is
shown in the next theorem.

Theorem 4.2 Consider ML(#) with no propositional variable and formulas
of arbitary depth are allowed. Then there are formulas {ϕi}i∈N such that they
are finitely satisfiable but not satisfiable together.

Proof. Consider the following formulas:
ϕ1 := #> � #3>;
ϕ2 := #> � #3> � #33>;
ϕ3 := #> � #3> � #33> � #333>;
...
Then for any finitely many formulas ϕi1 , . . . , ϕik , suppose the largest index is
n, then their conjunction is equivalent to #> � #3> � . . . � #3n>. We
construct the following pointed Kripke model (M, w0):

• W = {w0} ∪ {wi,j | 1 ≤ j ≤ i ≤ n};
• R = {(w0, wi,1) | 1 ≤ i ≤ n} ∪ {(wi,j , wi,k) | 1 ≤ j < k ≤ i ≤ n and k =
j + 1};

• V is the vacuous valuation (since there is no propositional variable).

Then J#3i>KM,w0 = n − i where 0 ≤ i ≤ n, so J#>KM,w0 > J#3>KM,w0 >
. . . > J#3n>KM,w0 , therefore ϕi1 ∧ . . . ∧ ϕik is satisfiable.

However, if we consider {ϕi}i∈N, if this set is satisfiable, then there
is a pointed Kripke model (M, w) such that J#>KM,w0 > J#3>KM,w0 >
J#33>KM,w0 > . . ., which means that there is an infinite descending chain
of cardinal numbers, a contradiction. 2

Remark 4.3 From the construction of the counterexamples, we can see that
if a cardinality comparison language involves infinitely many non-equivalent
formulas, then we can construct the infinite descending chain of cardinal num-
bers, so the language cannot be compact. However, when we only have finitely
many variables and finite depth, then ML(#) has to be compact since there
are only finitely many non-equivalent formulas, according to the normal form
theorem in Section 7.4 in [10].
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5 Interpolation failure for GMLfin(#)

In this section, we use an argument similar to Proposition 2 in Section 3.3.1 in
[10] to show that graded modal logic with counting on the class of image-finite
frames and the class of finite frames does not have interpolation. Since the
proofs for the two cases are essentially the same, we only prove it for the case
of image-finite frames.

Fist of all, we consider the following definability result which will be used
in the proof of interpolation failure. Notice that the set of odd numbers is not
closed under taking multiples (see Definition 2.6) so it cannot be define by a
shallow ML(#)-formula.

Lemma 5.1 In the class of image-finite frames,

• #p = #¬p is satisfiable at (F, s) iff s has an even number of successors.

• ψ := #(q ∧ r) = #(q ∧ ¬r) ∧ 3=1¬q is satisfiable at (F, s) iff s has an odd
number of successors.

Proof.

• For #p = #¬p, the proof is similar to Proposition 2 in [4].
(⇐): Suppose that s has an even number of successors. Then we can

divide Rs into two disjoint parts X and Y of equal cardinality. Consider a
valuation V such that V (p) = X, then F, V, s  #p = #¬p.

(⇒): Suppose there is a valuation V on F such that F, V, s  #p = #¬p,
i.e. J#pKM,s = J#¬pKM,s, i.e. |Rs ∩ JpKM| = |Rs ∩ J¬pKM|. Since Rs = (Rs ∩
JpKM)∪ (Rs ∩ J¬pKM), we have that Rs can be divided into two disjoint parts
of equal cardinality. Therefore, s has an even number of successors.

• (⇐): Suppose that s has an odd number of successors. Then we can divide Rs
into three disjoint parts X,Y, Z, such that X and Y have the same cardinality
and Z is a singleton. Consider a valuation V such that V (q) = X ∪ Y ,
V (r) = X, then V (q ∧ r) = X, V (q ∧ ¬r) = Y , V (¬q) = Z, so F, V, s 
#(q ∧ r) = #(q ∧ ¬r) ∧3=1¬q.

(⇒): Suppose there is a valuation V on F such that F, V, s  #(q ∧ r) =
#(q∧¬r)∧3=1¬q. Then J#(q∧ r)KM,s = J#(q∧¬r)KM,s and J#¬qKM,s = 1,
i.e. |Rs ∩ J(q ∧ r)KM| = |Rs ∩ J(q ∧ ¬r)KM| and |Rs ∩ J¬qKM| = 1. Therefore,
Rs can be divided into three disjoint parts X,Y, Z, such that X and Y have
the same cardinality and Z is a singleton. Thus s has an odd number of
successors.

2

The following lemma is an indistinguishability result, which says that
GML(#)-formulas without propositional variables and with grade number ≤ n
cannot distinguish point with n+5 successors from point with n+6 successors:

Lemma 5.2 Consider the following two frames: F with one root s and n + 5
dead end successors, and G with one root t and n+6 dead end successors. Then
for any graded modal logic with counting GML(#)-formula θ built up from no
propositional variable but only >, ⊥ using cardinality comparison formulas and
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graded modalities of grade number ≤ n (i.e., the largest number occurring in a
graded modality 3≥n), we have that (F, s)  θ iff (G, t)  θ.

Proof. First of all, notice that we do not need a valuation V because we have
no propositional variable.

For any formula ϕ in GML(#) without propositional variables, among the
dead end successors, the formula is either true in all such successors or false in
all such successors, so for any ϕ, either J#ϕKF,s = n+ 5 and J#ϕKG,t = n+ 6,
or J#ϕKF,s = J#ϕKG,t = 0.

Now we can prove by induction on θ showing that (F, s)  θ iff (G, t)  θ:
• When θ is ⊥ or >, trivial. The Boolean cases are also easy.

• When θ is 3≥mγ, then since 1 ≤ m ≤ n, we have

(F, s)  θ
iff J#γKF,s ≥ m
iff J#γKF,s = n+ 5
iff J#γKG,t = n+ 6
iff J#γKG,t ≥ m

(iff G, t)  θ.
• When θ is #γ % #δ, then

(F, s) 1 θ
(iff F, s)  #δ � #γ

iff J#δKF,s = n+ 5 and J#γKF,s = 0
iff J#δKG,t = n+ 6 and J#γKG,t = 0
iff (G, t)  #δ � #γ
iff (G, t) 1 θ.

2

Now we have the following main result:

Theorem 5.3 Graded modal logic with counting on the class of image-finite
frames does not have interpolation.

Proof. We consider the formulas ϕ := #p = #¬p, ψ := #(q ∧ r) = #(q ∧
¬r)∧3=1¬q. We will show that  ϕ→ ¬ψ but ϕ and ¬ψ have no interpolant.

To check that  ϕ → ¬ψ, it suffices to check that  ∃pϕ → ∀q∀r¬ψ.
According to the lemma before, (F, s)  ∃pϕ iff s has an even number of
successors, and (F, s)  ∀q∀r¬ψ iff s does not have an odd number of successors,
in image-finite frames this means that s has an even number of successors.
Therefore  ϕ→ ¬ψ holds.

If an interpolant θ without any propositional variable exists for ϕ and ¬ψ,
then  ϕ→ θ and  θ → ¬ψ, so  ∃pϕ→ θ and  θ → ∀q∀r¬ψ, which means
that θ is true at (F, s) iff s has an even number of successors.

Now we show that θ is not definable in graded modal logic with counting
GML(#) in image-finite frames if we do not have any propositional variable
but > and ⊥ only:

Suppose there is such a θ built up from > and ⊥ using connectives in
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GML(#), then there is an upper bound in the grade number in the formula
θ, say n (i.e., the largest number occurring in a graded modality 3≥n). By
Lemma 5.2, for F with one root s and n + 5 dead end successors, and G with
one root t and n + 6 dead end successors, (F, s)  θ iff (G, t)  θ. But θ can
distinguish even number of successors and odd number of successors, so θ have
different values in (F, s) and (G, t), a contradiction.

Therefore, such a θ cannot be defined in GML(#). So graded modal logic
with counting on the class of image-finite frames does not have interpolation.2

Remark 5.4 For the result that we proved here, we notice that both the usage
of graded modal logic with counting and the condition of image-finiteness play
an important role. The usage of graded modalities guarantees that we can
define a semilinear set which is not closed under taking multiples (i.e. the set
of odd numbers), therefore we can use ∃q∃rψ to define the set of odd numbers
and ∀q∀r¬ψ to define the set of even numbers. If we only have modal logic
with counting ML(#), then we cannot define the set of even numbers using
universally quantified formulas, since existentially quantified formulas cannot
define the set of odd numbers (due to that the set of odd numbers is not closed
under taking multiples).

For the requirement of image-finiteness, consider the formulas ϕ and ψ, they
are both satisfiable at nodes with infinitely many successors, therefore if we drop
the condition of image-finiteness, then ∃pϕ defines the class of even numbers
and infinite cardinals, and ∃q∃rψ defines the class of odd numbers and infinite
cardinals. Apparently this is problematic, since in this case  ∃pϕ→ ∀q∀r¬ψ
does not hold anymore.

6 Halldén completeness for the shallow fragment of
Dfin(#)

In order to meet some certain constructivist demands, for logics like intuition-
istic logics and relevance logics, their systems expect for the full disjunction
property. Halldén completeness is a weaker property, in which there is growing
interest within both philosophy and computer science. A logic L is Halldén-
complete if, for any formulas ϕ and ψ having no variables in common, ϕ∨ψ ∈ L
implies that ϕ ∈ L or ψ ∈ L. In [9], van Benthem and Humberstone give a
sufficient condition for normal modal logics to be Halldén-complete.

In this section, we prove that the shallow fragment (i.e., the fragment of
all the shallow formulas) of modal logic with counting on the class of serial
image-finite frames has Halldén completeness. In this proof, we make use of
Theorem 2.7 which is proved in Section 4 in [4].

Theorem 6.1 If two shallow formulas ϕ and ψ share no propositional vari-
ables and ϕ ∨ ψ is Dfin(#)-valid (i.e. valid on the class of serial image-finite
frames), then either ϕ is Dfin(#)-valid or ψ is Dfin(#)-valid.

Proof. Suppose ϕ∨ψ is Dfin(#)-valid, then ∀pϕ∨∀qψ is Dfin(#)-valid, where p
are all the propositional variables occurring in ϕ and q are all the propositional
variables occurring in ψ. Therefore, for any image-finite serial frame F =
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(W,R), any valuation V , any w ∈ W , F, V, w  ∀pϕ ∨ ∀qψ, so F, V, w  ∀pϕ
or F, V, w  ∀qψ, i.e. F, V, w 1 ∃p¬ϕ or F, V, w 1 ∃q¬ψ. Since the valuation
here plays no role, we have that F, w 1 ∃p¬ϕ or F, w 1 ∃q¬ψ.

By Theorem 2.7, there are two subsets Y1 and Y2 of N such that Y1 and Y2
are defined by ¬ϕ and ¬ψ, respectively.

Therefore, we have that for any serial image-finite frame F = (W,R), any
w ∈ W , |Rw| /∈ Y1 or |Rw| /∈ Y2. Since |Rw| ranges over all positive natural
numbers, we have that Y1 ∩Y2 ⊆ {0}. Since Y1 and Y2 are both semilinear and
closed under multiples, we have that if Y1 and Y2 both have non-zero elements
k and l respectively, then k · l belong to both, a contradiction. So Y1 ⊆ {0} or
Y2 ⊆ {0}.

When Y1 ⊆ {0}, we have that for any serial image-finite frame F = (W,R),
any w ∈ W , |Rw| 6= 0, so |Rw| /∈ Y1, so F, w 1 ∃p¬ϕ, i.e. F, w  ∀pϕ. So ϕ
is Dfin(#)-valid. If Y2 ⊆ {0}, then by a similar argument we have that ψ is
Dfin(#)-valid. So either ϕ is Dfin(#)-valid or ψ is Dfin(#)-valid. 2

7 Conclusion

In this paper, we investigate some model-theoretic properties of ML(#) and its
variants. For further directions, we mention the followings:

• For the model size, it is easy to see that using cardinality comparison formu-
las, we can force the number of successors to have cardinality ≥ ℵn for any
n ∈ N, but if we allow countable conjunctions and disjunctions, the forcing
power is not clear.

• For interpolation, it is not clear whether ML(#) lacks interpolation, s-
ince we cannot apply the same kind of construction as in Proposition 2 in
[10]. It is clear that the interpolant lives in second-order modal logic with
counting/second-order graded modal logic with counting, but it is not clear
if we can we find smaller language that have interpolation.
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Abstract

This study explores whether large language models (LLMs) exhibit human-like biases
in responsibility attribution. Previous work on whether users of fully automated ve-
hicles should be held responsible for accidents reported that humans attribute more
responsibility to users of driverless cars and driverless taxi passengers than to con-
ventional taxi passengers, despite none having direct vehicle control. It is against
the control doctrine, which holds that individuals are only morally responsible for
actions they control. This study replicated a human experiment using GPT-3.5 and
GPT-4 to rate causal, legal, and moral responsibility in three conditions: an owner
of a fully automated car, a passenger in a robotaxi, and a passenger in a conventional
taxi. Both LLMs, as well as human participants, rated more responsibility to the
owner of the automated car. However, the LLMs assigned more responsibility to the
conventional taxi passenger than the robotaxi passenger. GPT-4 was relatively more
rational, assigning minimal responsibility to both taxi passengers but some to the
automated car owner. The study discusses the reasons behind these responses and
offers insights into the moral psychology of humans and LLMs.

Keywords: Moral psychology, large language model, responsibility attribution,
automated vehicle.

1 Introduction
Artificial machines empowered by AI are increasingly assuming significant roles
in the moral domain, functioning as moral agents, patients, or proxies [7]. For
instance, large language models (LLMs), designed to understand and generate
human language, may assist in making decisions and judgments in moral and
ethical relevant domains [3]. There is growing interest in evaluating whether
these models can mirror human-like decisions and judgments, the norms they
encode, their decision-making processes, and their susceptibility to human-like
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biases in these domains (e.g.,[1][4][5][15]). These questions encompass funda-
mental topics such as human-LLM alignment, moral foundations and reasoning,
biases, and safety. Researchers have treated LLMs as “participants” and used
human psychological tests to investigate their behaviors in these areas.

Of note, current LLM evaluation works have certain methodological issues.
Some studies rely on existing classic human experiments, where LLMs may
have already “learned” or “known” human responses from their training data.
Consequently, these evaluations might only provide a snapshot of average hu-
man responses over a fixed past period [10]. Another concern is that some
evaluation tasks are relatively simple. Shrawgi et al. [18] have showed that
LLMs are good at hiding their biases in simple tasks, and however, that as
tasks grow more complex and challenging, their inherent prejudice related to
nationality, gender, race, and religion becomes increasingly apparent. Thus, it
is necessary to use novel and challenging tasks while evaluating LLMs.

Here we assess LLMs through a social task: Should users of fully automated
vehicles be held responsible for accidents involving these vehicles? Ascribing
occupant responsibility for traffic harm involving full automation is a societal
challenge. Users of L5 fully automated cars (i.e., driverless cars) do not have
direct vehicle control and are merely passengers [9]. The control doctrine in
ethics and law holds that individuals can only be morally responsible for actions
over which they have control [8][12][14]. Hevelke and Nida-Rümelin [11] argued
that it is a form of defamation if a rider of a fully automated car gets blamed
for the death of another caused by this automated vehicle when the rider never
had a real chance to intervene. However, several recent experimental studies
[2][6][19], utilizing different experimental designs, consistently demonstrate that
human participants from different nations tend to attribute some responsibility
to users of L5 fully automated vehicles and blame them for accidents caused
by their driverless vehicles. Zhai et al. [19] found that this counter-intuitive
finding signals a new bias against (users of) driverless cars (more information
about their experiments will be given later).

Here, we replicate the human participant experiments from Zhai et al. [19],
as their experiments meet our criteria for testing LLMs: (1) these experiments
are novel, making it unlikely that they have been included in the LLMs’ training
sets; (2) they examine a complex social problem in the era of fully automated
vehicles. Our aim is to investigate whether LLMs exhibit biases similar to
humans in attributing occupant responsibility (causal responsibility, legal re-
sponsibility, moral responsibility in terms of blame) for accidents involving fully
automated vehicles. Our study includes three replications. Next, we report the
results of the first replication.

2 Method
Zhai et al. [19] compared the responsibility attributed to the occupants in
three riding conditions: an owner in their private L5 fully automated car (L5
car), a passenger in a driverless taxi (Robotaxi or L5 taxi), and a passenger
in a conventional taxi. None of these three occupants have direct control over
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the vehicles that cause identical pedestrian injuries. The passenger in the con-
ventional taxi is assumed to bear no responsibility for crashes under current
traffic law. If the owner of an L5 car is held more responsible than the pas-
senger in the conventional taxi, it might be due to ownership [16]. However,
what if a passenger riding in a Robotaxi is also attributed more responsibility
than a passenger in a conventional taxi when the two taxis cause the same
crash?” In their cross-national work with seven experiments, Zhai et al. [19]
reported a counter-intuitive finding: the users of L5 automated vehicles (the
private L5 car and Robotaxi) are ascribed more responsibility compared to
the passengers in conventional taxis. This phenomenon persists across various
contextual factors, including the origin of participants (e.g., China vs. South
Korea), their perspective (first-person vs. third-person), and whether the oc-
cupants are physically present in the vehicle. Furthermore, Zhai et al. [19]
confirmed that this phenomenon is partly due to participants’ expectation that
users of L5 automated vehicles are more likely to foresee the potential conse-
quences of using driverless cars. It might be counterfactual thinking or a biased
intuitive reaction, as these users do not actually have more foresight in reality
[17]. Simply put, current surveys indicate that human participants have biased
responses when ascribing responsibility to the users of fully automated vehicles
when these vehicles cause traffic harm.

We replicated the human participant experiments from Zhai et al. [19] us-
ing two LLMs (OpenAI’s GPT-3.5 and GPT-4) as “survey participants.” We
asked them the same questions posed in the previous human experiments, gen-
erated their responses via API, and inquired about the reasons behind their
responses. Identical to the human participants, the LLMs were prompted to
read a description of L5 automated cars under two L5 conditions (excluding the
conventional taxi condition) and a crash caused by the vehicle. For example,
the crash scenario for the L5 car was: “On an urban road, an L5 automated
driving car is carrying its owner and operating in automated driving mode.
It strikes a pedestrian suddenly crossing the road and causes injury. Before
this collision, the car owner is on his phone, and the fully automated driving
system does not work properly.” The LLMs then responded to three respon-
sibility attribution questions: causal responsibility, legal responsibility, and
blameworthiness (moral responsibility). For instance, the questions in the L5
car condition were:
• Causal responsibility: “To what extent do you think the car owner cause the

pedestrian injury in this crash?” (1 = very low, 10 = very high)
• Legal responsibility: “To what extent do you think should the car owner be

legally responsible for this crash?” (1 = very low, 10 = very high).
• Blameworthiness: “To what extent do you think should the car owner be

blamed for this crash?” (1 = very low, 10 = very high).
At the end of each call, we checked whether the LLM truly understood

L5 vehicle automation and the crash scenario (not in the conventional taxi
condition). If the LLM thought the occupant (the owner in the private L5 car

Chu,  Zhang,  and  Liu  

118



or the passenger in the Robotaxi), who was looking at their phone before the
crash, was able to intervene and prevent the crash, it was considered to have
misunderstood, and its response was excluded.

For each of the questions, we asked the LLM to choose an integer between
1 and 10 as its response. If the LLM provided a range of values or refused
to answer, we asked again. After a maximum of three inquiries, if it still
did not provide a specific value, its response was labeled as a rejection. We
also included a question about the negative affect evoked by the crash. The
LLM typically stated that, as an artificial intelligence assistant, it does not
have personal emotions or subjective judgment capabilities, and thus cannot
provide subjective evaluations. Therefore, we removed the LLM responses to
this question.

For each riding condition, we conducted 120 independent calls to each LLM.
Each independent call was treated as an ”independent participant.” During each
call, we adjusted the GPT model’s ”temperature” parameter, which controls
the randomness in generated responses. We started at 1.0 and increased it by
0.002 each time, resulting in a final temperature of 1.238 after 120 adjustments.
This approach approximates the human sample size in the previous experiments
by Zhai et al. [19]. We used ”GPT-3.5-turbo-0125” for GPT-3.5’s responses and
”GPT-4-0613” for GPT-4’s responses. An LLM response in a call was excluded
for two reasons: either the LLM did not pass the comprehension check, or it
did not generate a meaningful response even after three inquiries. Thus, the
final number of valid responses for each LLM in each riding condition was not
always equal to 120.

3 Results
In Zhai et al.’s [19] original study with human participants, the three respon-
sibility questions showed great internal consistency and were factored into a
single factor (i.e., responsibility attribution or responsibility judgment). In the
current work, we also found that the LLM responses to the three responsibil-
ity questions could be factored into a single factor. However, we noticed that
analyzing the responsibility questions separately or jointly yielded results with
minor differences. Therefore, we reported the results for each responsibility
question separately.

[We reused human response data from Zhai et al. 19],
(availablepubliclyarewhich https://osf.io/58s42/?view_only=

6b5b8d4bade449a8a0f8d0cc8836ac57). We employed the bootstrap method
with 5000 resamples to conduct a 3 (riding condition: L5 car vs. L5 taxi vs.
conventional taxi) analysis of variance (ANOVA) test for each participant
type. Our primary focus was on examining occupant responsibility rated
by each participant type across the riding conditions. Post-hoc comparisons
were adjusted using the Bonferroni correction. Descriptive statistics (mean
and standard deviation) of occupant responsibility rated by three types of
participants are shown in Table 1.
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Table 1
Descriptive statistics (mean and standard deviation) of occupant responsibility

rated by three types of participants
Occupant GPT-4GPT-3.5Human

Causal
responsi-
bility

L5 car owner 1.93 (0.97)6.62 (2.27)5.92 (2.63)
1.27 (0.46)3.47 (1.49)L5 taxi passenger 4.87 (3.01)
1.58 (0.70)4.93 (1.25)3.01 (2.24)C. taxi passenger

Legal
responsi-
bility

L5 car owner 2.84 (1.23)6.06 (1.80)6.66 (2.56)
1.04 (0.21)2.68 (1.13)L5 taxi passenger 4.92 (3.14)
1.05 (0.22)3.06 (0.93)2.69 (1.97)C. taxi passenger

Blame-
worthiness

L5 car owner 2.43 (1.09)6.44 (1.52)6.33 (2.60)
1.10 (0.30)3.62 (1.24)5.21 (3.05)L5 taxi passenger
1.47 (0.79)4.25 (1.37)3.24 (2.21)C. taxi passenger

Note: SD = standard deviation. C. taxi passenger = conventional taxi
passenger

3.1 Causal responsibility
Riding condition had a significant influence on causal responsibility rated by
each participant type (human: F (2, 388) = 40.60, p < .001, η2p = .17; GPT-
3.5: F (2, 300) = 82.58, p < .001, η2p = .36; GPT-4: F (2, 344) = 23.03,
p < .001 , η2p = .12). Human participants rated greater causal responsibility
to the L5 car owner than to the L5 taxi passenger (∆M = 1.05, t(388) = 3.05,
p = .002, Cohensd = 0.40) and to the conventional taxi passenger (∆M = 2.92,
t(388) = 9.62, p < .001, d = 1.10). They also rated greater causal responsibility
to the L5 taxi passenger than to the conventional taxi passenger (∆M = 1.86,
t(388) = 5.69, p < .001, d = 0.71).

Similarly, both GPT-3.5 and GPT-4 rated greater causal responsibility to
the L5 car owner than to the L5 taxi passenger (GPT-3.5: ∆M = 3.15, t(300) =
10.40, p < .001, d = 1.94; GPT-4: ∆M = 0.67, t(344) = 6.62, p < .001,
d = 0.90) and to the conventional taxi passenger (GPT-3.5: ∆M = 1.69,
t(300) = 5.80, p < .001, d = 1.04; GPT-4: ∆M = 0.35, t(344) = 3.20,
p = .001, d = 0.47); see Fig. 1. However, the two LLMs rated greater causal
responsibility to the conventional taxi passenger than to the L5 taxi passenger
(GPT-3.5: ∆M = 1.46, t(300) = 8.18, p < .001, d = 0.90; GPT-4: ∆M = 0.31,
t(344) = 4.11, p < .001, d = 0.43).

As shown in Fig. 1, as compared to human participants and GPT-3.5
(see Table 1), GPT-4 rated limited causal responsibility to the L5 car owner
(Mean = 1.93, SD = 0.97), L5 taxi passenger (Mean = 1.27, SD = 0.46), and
conventional taxi passenger (Mean = 1.58, SD = 0.70).
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Fig. 1. Causal responsibility attributed to the occupants of the L5 private car, L5
taxi, and conventional taxi (C. taxi) by the three kinds of participants. Error bars =
± 1.96 standard errors (SE).∗p < .05; ∗∗p < .01; ∗∗∗p < .001

3.2 Legal responsibility
Riding condition significantly influenced occupant legal responsibility rated by
each participant type (human: F (2, 388) = 75.96, p < .001, η2p = .28; GPT-
3.5: F (2, 300) = 177.14, p < .001, η2p = .54; GPT-4: F (2, 344) = 234.84,
p < .001, η2p = .58). Human participants rated greater legal responsibility to
the L5 car owner than to the L5 taxi passenger (∆M = 1.74, t(388) = 4.88,
p < .001, d = 0.67) and to the conventional taxi passenger (∆M = 3.96,
t(388) = 13.75, p < .001, d = 1.52). They also rated greater legal responsibility
to the L5 taxi passenger than to the conventional taxi passenger (∆M = 2.23,
t(388) = 6.94, p < .001, d = 0.86).

Like human participants, both GPT-3.5 and GPT-4 rated greater legal
responsibility to the L5 car owner than to the L5 taxi passenger (GPT-3.5:
∆M = 3.38, t(300) = 14.16, p < .001, d = 2.69; GPT-4: M = 1.80, t(344) =
15.52, p < .001, d = 2.48) and to the conventional taxi passenger (GPT-3.5:
∆M = 3.00, t(300) = 13.12, p < .001, d = 2.39; GPT-4: ∆M = 1.79, t(344) =
15.52, p < .001, d = 2.47); see Fig. 2. Unlike human participants, GPT-3.5
rated greater legal responsibility to the conventional taxi passenger than to the
L5 taxi passenger (∆M = 0.38, t(300) = 2.77, p = .006, d = 0.30). There was
no significant difference in the two taxi passengers’ legal responsibility rated
by GPT-4 (p = .826).

As shown in Fig. 2, as compared to human participants and GPT-3.5
(see Table 1), GPT-4 rated limited legal responsibility to the L5 car owner
(Mean = 2.84, SD = 1.23) and almost none legal responsibility to the L5
taxi passenger (Mean = 1.04, SD = 0.21) and conventional taxi passenger
(Mean = 1.05, SD = 0.22).

3.3 Blameworthiness
Riding condition had a significant impact on occupant blameworthiness rated
by each participant type (human: F (2, 388) = 45.86, p < .001, η2p = .19;
GPT-3.5: F (2, 300) = 97.64, p < .001, η2p = .39; GPT-4: F (2, 344) = 86.10,
p < .001, η2p = .33). Human participants rated greater blame to the L5 car
owner than to the L5 taxi passenger (∆M = 1.13, t(388) = 3.19, p = .002,
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Fig. 2. Legal responsibility attributed to the occupants of the L5 private car, L5 taxi,
and conventional taxi (C. taxi) by the three kinds of participants. Error bars = ±
1.96 SE.∗p < .05; ∗∗p < .01; ∗∗∗p < .001

d = 0.43) and the conventional taxi passenger (∆M = 3.10, t(388) = 10.28,
p < .001, d = 1.17), and rated greater blame to the L5 taxi passenger than
to the conventional taxi passenger (∆M = 1.97, t(388) = 6.01, p < .001,
d = 0.75).

Similarly, as shown in Fig. 3, GPT-3.5 and GPT-4 rated greater blame
to the L5 car owner than to the L5 taxi passenger (GPT-3.5: ∆M = 2.82,
t(300) = 13.19, p < .001, d = 2.07; GPT-4: ∆M = 1.34, t(344) = 12.69,
p < .001, d = 1.68) and conventional taxi passenger (GPT-3.5: ∆M = 2.19,
t(300) = 10.00, p < .001, d = 1.61; GPT-4: ∆M = 0.96, t(344) = 7.81,
p < .001, d = 1.21). However, they rated greater blame to the conventional taxi
passenger than to the L5 taxi passenger (GPT-3.5: ∆M = 0.63, t(300) = 3.71,
p < .001, d = 0.47; GPT-4: ∆M = 0.37, t(344) = 4.84, p < .001, d = 0.47).

As shown in Fig. 3, as compared to human participants and GPT-3.5 (see
Table 1), GPT-4 rated limited blameworthiness to the L5 car owner (Mean =
2.43, SD = 1.09), and almost none blameworthiness to the L5 taxi passenger
(Mean = 1.10, SD = 0.30) and conventional taxi passenger (Mean = 1.47,
SD = 0.79).

Fig. 3. Blameworthiness attributed to the occupants of the L5 private car, L5 taxi,
and conventional taxi (C. taxi) by the three kinds of participants. Error bars = ±
1.96 SE.∗p < .05; ∗∗p < .01; ∗∗∗p < .001

4 Discussion and Conclusions
We sought opinions from both humans and two LLMs to address the chal-
lenge of assigning occupant responsibility in cases of traffic harm involving full
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automation. Our analysis revealed both similarities and differences in their re-
sponsibility attribution. Consistent with human participants in prior research
[19], the two LLMs attributed more responsibility to the owners of private L5
cars than to passengers in L5 and conventional taxis. Through qualitative
analysis of the LLMs’ reasons, we found that they primarily attributed respon-
sibility to automobile manufacturers or developers of the automated driving
system. However, they also considered the L5 car owner’s role, suggesting that
ownership played a significant factor in their responsibility rating.

Human participants attributed more responsibility to the passenger in the
L5 Robotaxi compared to conventional taxis, which contradicts the control
doctrine stating that individuals are morally responsible only for actions they
control [8][12][14]. In both taxi conditions, passengers have no direct control
over the vehicle. Zhai et al. [19] observe that this is not due to the perception
that these occupants have greater control over driving but because they are
more expected to foresee the potential consequences of using driverless cars.
That is, reasonable foreseeability [13] is a potential psychological mechanism
underlying this biased human judgment. However, both LLMs tended to at-
tribute less responsibility to the passenger in the L5 Robotaxi. Our qualitative
analysis revealed that a significant reason for this was the perception that L5
Robotaxi passengers are not required to monitor driving behavior and the en-
vironment, unlike passengers in conventional taxis who may need to remind
drivers to drive safely and uphold a duty of care. In reality, however, taxi
passengers do not bear this responsibility. Thus, both LLMs exhibit a non-
human-like bias in responsibility attribution. This discrepancy suggests that
LLMs and humans may employ different processes or prioritize different factors
in responsibility attribution.

Assigning occupant responsibility for traffic harm involving full automation
poses a significant challenge. However, there is a consensus that regardless
of the type of taxi driver, passengers in taxis should not be held responsible
for any traffic harm. Considering this perspective, GPT-4 appears to be more
rational than other agents, as it assigned very limited responsibility to both
passengers (refer to Fig. 1–3).

In conclusion, we sought opinions from both humans and two LLMs to
address the challenge of assigning occupant responsibility for traffic harm in-
volving full automation. Our analysis revealed both similarities and dissimilar-
ities in their responsibility judgments. These dissimilarities suggest that LLMs
and humans may engage in different processes or prioritize different factors in
responsibility judgment. Our study provides insights into understanding the
differences in moral psychology between humans and machines.
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Abstract

Trained on large, high-quality data corpora, many Large Language Models (LLMs)
demonstrate powerful reasoning abilities across various tasks, even in a zero-shot man-
ner. Existing works have shown that LLMs can perform deduction steps in formal
logics, such as first-order logic. However, it remains unclear whether LLMs possess
generalizable defeasible reasoning abilities when dealing with inconsistent and incom-
plete knowledge. In this study, we aim to investigate the capacity of large language
models for defeasible reasoning, particularly within the framework of formal defeasi-
ble logic. Specifically, we select the popular defeasible logic framework, DeLP, as the
basis for evaluating the LLMs’ defeasible logical reasoning capabilities. We initially
create a synthetic dataset comprising logical programs that encompass a variety of
programs with differing depths of reasoning. To address the challenges encountered
during inference, we introduce a Chain-of-Thought (CoT) framework that prompts
LLMs to engage in multi-step defeasible reasoning, thereby enhancing problem-solving
performance. Employing this argumentative solving approach, we observe that LLMs
struggle to manage defeasible information effectively. These surprising findings raise
questions about whether contemporary LLMs possess reasoning abilities comparable
to human intelligence.

Keywords: defeasible reasoning, large language model

1 Introduction

Recent strides in large language models (LLMs) have markedly enhanced their
competency in managing sophisticated reasoning challenges, highlighting their
versatility across numerous sectors. Existing models have exhibited emergent
capabilities across a diverse array of reasoning tasks. Notably, these abilities
are commonly shown in zero-shot manner without further training on specific
task, which can be elicited by advanced prompting techniques [16,1,6,2,17].
The prompting engineering aims to well formulate the question and instruct
a LLM to decompose a complex task into simple steps and perform reasoning
step by step.

Commonsense reasoning tasks are frequently formulated in terms of soft
inferences: what is likely or plausibly true given some contexts, rather than
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what is necessarily true. This pattern of reasoning is known as defeasible rea-
soning [11], where LLMs are not fully revealed and evaluated. For example,
the implication that “the alarm will go off if there’s a fire in the building”
will be weakened by new information indicating that “the alarm went off be-
cause someone burnt toast in the kitchen.” Defeasible reasoning is a crucial
component for building general intelligent systems and has received increasing
attention from industry [3,4,15]. In a common and complex defeasible reason-
ing task [12,7], the underlying reasoning process is quite complex and usually
described by formal logical system, which is relatively hard to be captured by
LLMs. Existing works has shown that LLMs are able to conduct deductive
steps based on a small set of in-context examples, while their performances are
relatively poor on formal reasoning [8]. Besides, most previous works focus on
inference of propositional logic or first order logic, the prediction performances
get worse in non-monotonic reasoning that needs to tackle contradictory infor-
mation [9]. Though the formal defeasible reasoning ability is neglected before,
we claim that the it should be sufficiently and independently evaluated [13,10].

In this paper, we aim to develop a Chain-of-Thought (CoT) framework
to enhance LLMs’ abilities in defeasible logic reasoning and provide a com-
prehensive evaluation of formal language. Specifically, we select the popular
Defeasible Logic Programming (DeLP) as our basis for evaluation and analysis
due to its high representative capability. DeLP offers a computational reason-
ing framework that employs an argumentation engine for deriving answers from
a knowledge base described by a logic programming language extended with
defeasible rules. We first create a benchmark consisting of synthetic program
data and random queries. This benchmark includes various reasoning depths
to cover different levels of difficulty. We then propose a multi-step reasoning
method that captures the process of solving a warrant, which involves informa-
tion extraction and a complex argumentative reasoning process. A standard
DeLP solver is engaged to facilitate the continuation of the inference process.
The framework guides and instructs the LLM to conduct argumentative and
defeasible reasoning, where the DeLP solver can provide possible external aids.

In the evaluation, we report the performances of different models on this
benchmark. We observe that most models struggle to process defeasible in-
formation, raising questions about contemporary LLMs’ defeasible reasoning
abilities. Thanks to the formal language, we can precisely trace back possible
errors and identify performance gaps.

2 Preliminaries

Formally, DeLP language consists of three separate groups: a set of facts, a
set of strict rules, and a set of defeasible rules. A fact (literal) is a ground
atom A or a negated ground atom ∼A, where “∼” represents strong negation.
Strict rule represents firm knowledge, denoted as Head← Body where Head
is a literal and Body is a finite non-empty set of literals, like in first order logic.
Pragmatically, a defeasible rule is used to represent defeasible knowledge, i.e.,
tentative information, that may be used if nothing could be posed against it.
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For example, “a bird usually flies” is denoted as “fly –< bird”. Formally, “ –<”
replace “←” is all that distinguishes a defeasible rule from a strict one.

Definition 2.1 [Defeasible Logic Program] A Defeasible Logic Program P is a
possibly infinite set of facts, strict rules, and defeasible rules. Within a program
P, Π denotes the subset consisting of all facts and strict rules, ∆ denotes the
set of defeasible rules. We represent P as a tuple (Π,∆).

In this paper, we use the following tweety example in DeLP, denoted as P1,
to illustrate our method.

Program 1: Tweety example

% Facts

bird(opus).

penguin(tweety).

wings(tweety).

% Strict Rules

bird(X) <- penguin(X).

% Defeasible Rules

fly(X) -< bird(X).

~fly(X) -< penguin(X).

The derivation of one literal L is a finite sequence of ground literals that
lead to L. In DeLP, we distinguish strict and defeasible derivation by whether
defeasible rules are used in the derivation. In P1,

penguin(tweety), bird(tweety)

is a strict derivation by a strict rule bird(X)← penguin(X), while

penguin(tweety),∼fly(tweety)
is a defeasible derivation using defeasible rule ∼fly(X) –<penguin(X).

Definition 2.2 [Argument Structure] Let h be a literal and P = (Π,∆) a
DeLP program. We say that ⟨A, h⟩ is an argument structure for h, if A is a set
of defeasible rules of ∆, such that:

- there exists a defeasible derivation for h from Π ∪ A,
- the set Π ∪ A is non-contradictory, and
- A is minimal: there is no proper subset A′ of A such that A′ satisfies

previous conditions.

Definition 2.3 [Counter-argument] Let P = (Π,∆) be a DeLP program. We
say that ⟨A1, h1⟩ counter-argues ⟨A2, h2⟩, if and only if there exists a sub-
argument ⟨A, h⟩ of ⟨A2, h2⟩ such that Π ∪ {h, h1} is contradictory.

Intuitively, an argument is a minimal set of rules used to derive a conclusion.
In P1, the literal fly(tweety) is supported by the following argument structure:

⟨fly(tweety) –< bird(tweety), f ly(tweety)⟩ (1)
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whereas ∼fly(tweety) has the following argument to support it:

⟨∼fly(tweety) –<penguin(tweety),∼fly(tweety)⟩ (2)

As fly(tweety) and ∼fly(tweety) are contradictory, argument 1 and argu-
ment 2 are counter-argument of each other.

Given an argument structure ⟨A1, h1⟩, and a counter-argument ⟨A2, h2⟩
for ⟨A1, h1⟩, these two arguments can be compared by specificity in order to
decide which one is better. The specificity defined in [7] favors two aspects
in an argument: it prefers an argument (1) with greater information content
or (2) with less use of rules. In other words, an argument is preferable than
another if it is more precise or more concise. In the tweety example, argument 2
is better than argument 1 since it’s more “direct”.

In DeLP a query q will succeed when there is an warranted argument Aq
for q. The judgement of whether one argument is warranted is obtained by an
argumentative scheme, which is somehow complicated and involves analysis of
a dialectical tree.

Definition 2.4 [Answer to queries] There are four possible answers for a query
h:

• YES, if h is warranted;

• NO, if the complement of h is warranted;

• UNDECIDED, if neither h nor ∼h are warranted;

• UNKNOWN, if h is not in the language of the program.

In P1, the answer of the query fly(tweety) is NO. For the sake of easy
presentation, we omit some detailed introduction in this session. Please refer
to [7] for more definition and details in DeLP solving process.

3 Dataset generation

To investigate a LLM’s ability to emulate rule-based reasoning, we take a sim-
ilar strategy as [5] to generate datasets with various number of entities and
number of rules, representing different difficulty levels. Each example in a
dataset is a triple (P,Q,A), where P is a valid DeLP program, Q is a query
statement, and A is the standard answer.

In this work, for the sake of simplicity, in our dataset the query has only
one possible derivation so that the root of dialectical tree is the associated
argument. With this simplicity, an argument ⟨A, h⟩ is warranted if there is no
defeaters or all its defeaters are defeated by other arguments.

3.1 Program generation

To generate each example, we first generate a small theory (facts + rules) in
DeLP, use a solver to solve every literals in the program, then select query state-
ments from those literals. Additionally, problems with answer UNKNOWN are
randomly selected outside the program. There are four fundamental elements
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% Fact
kind('Charlie').
cold('Anne'). 
green('Bob').

% Strict Rule
~red(X) <- cold(X),kind(X).
young(X) <- big(X).
~green(X) <- ~blue(X).

% Defeasible Rule
~big(X) -< nice(X),old(X).
nice(X) -< kind(X).

~red('Anne')~red('Anne')

Query

Program

Fig. 1. DeLP problem sample.

to construct one DeLP program: Entity, Variable, Attribute and Predicate. A
data sample is shown in Figure 1.

In this work, the variable set contains a sole symbol X. All the predicate
are unary that can be interpreted as “ei is aj”, where ei is one entity or X and
aj is one attribute, like “Charlie is kind” is the first fact in Figure 1. Facts are
randomly generated by sampling attributes and entities from predefined sets
which has all total 3 entities and 8 attributes. Rules are implicitly universally
quantified over that variable. For example, the formal form of the first rule in
Figure 1 means “if someone is kind and cold, then they are not red”. Each
theory contains 1-16 facts, 1-5 strict rules and 1-10 defeasible rules generated
at random. During data generation, the validity of the program (Π is not-
contradictory) is also checked by solver. Different depths and different answers
are balanced for the sake of comprehensive evaluation.

3.2 Program solving

We adopt a modified DeLP solver introduced in Tweety Project [14] as the
standard solver to solve problems. Given a randomly generated program, we
enumerate all possible literals as query in the program, recording their final
answers. As the domains are finite, the number of literals within the program
are also finite. And we ensure that the rule base is non-ambiguity and non-cycle
before solving. During inference, the dialectical tree depth is annotated for the
target dataset, e.g., for the D = 2 dataset, the dialectical tree has depth 2.

3.3 Dataset statistic

We generate four datasets, each constrained by the depth of dialectical tree:
D = 0, D = 1, D = 2, D ≥ 3 respectively. Depth D = 0 means the problem is
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Depth
Answer

UNKNOWNUNDECIDEDNOYES

10100 − 10
15151 −−

1010102 −
≥ 1010103 −

Table 1
Benchmark statistic information.

simply a sub-problem of first order logic, i.e. no defeasible rules are needed for
proving. The dataset D1 indicates the inference uses defeasible rules, but no
contradiction is found. These two datasets are relatively easy, which only re-
quire first order logic inference ability to solve them. To tackle the problems in
the dataset D2, LLM must conduct defeasible reasoning following the instruc-
tions. The problems in D≥3 are more complicated, involving recursion and
situation judgement. The number of problems generated is listed in Table 1.
We denote Di the four sub datasets where the subscript i is the depth.

4 Method

In this section, we mainly introduce our Chain-of-thought framework to solve
a DeLP problem. The whole pipeline, as shown in Figure 2, mainly consists of
two stages. In the first stage, LLM extracts some key results from the original
problem, which contain sufficient and necessary information to solve the prob-
lem. The second stage is argumentation process that recursively finds defeaters
of specific arguments. To know whether LLMs can follow the instructions in
each reasoning step, a standard logic solver is engaged in the evaluation for
automatic scoring. Since the nature of formal language requires the reasoning
step to be specific and rigorous, we ask LLM to return a json object during
solving process. The terms in the json object are predefined, showing the key
clues of each step to guide LLMs to conduct reasoning. We additionally provide
an example of the expected json format in the prompt to facilitate in-context
learning.

4.1 Extract Information

For each data sample, the first step is to collect all the information necessary
to solve the problem. As mentioned in Section 3, the generated DeLP program
contains only one variable. So we can ground the rules with the query entity
and discard all other irrelevant entities. In this step, we ask LLM to find the
query entity and its complement, extract grounded strict rules and defeasible
rules.

4.2 Solve Closure

Logical reasoning problems entail utilizing available information to deduce new
knowledge essential for addressing the inquiry. In order to identify inconsisten-
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"strict_facts": [
"bird(tweety)",
"penguin(tweety)",
"wings(tweety)"

],
"defeasible_facts": [

"fly(tweety)",
"~fly(tweety)"

]

% Facts
bird('opus').
penguin('tweety').
wings('tweety').

% Strict Rule
bird(X) <- penguin(X).

% Defeasible Rule
~fly(X) -< penguin(X).
fly(X) -< bird(X).

% Facts% Facts

Program

Extract Information

"entity": "tweety",
"facts": [

"penguin(tweety)",
"wings(tweety)"

],
"strict_rules": [

"bird(tweety) <- penguin(tweety)"
],
"defeasible_rules": [

"fly(tweety) -< bird(tweety)",
"~fly(tweety) -< penguin(tweety)"

],
"query": "fly(tweety)",
"complement": "~fly(tweety)"

fly('tweety')fly(fly('tweety'fly(

Query

Solve Closure

"derivation_query": [
"penguin(tweety)",
"bird(tweety) <- penguin(tweety)",
"fly(tweety) -< bird(tweety)"

],
"derivation_complement": [

"penguin(tweety)",
"~fly(tweety) -< penguin(tweety)"

],

Derivation

“defeasible_fact_1": "fly(tweety)",
"counter_fact_1": "~fly(tweety)",
"defeater_1": "~fly(tweety)"

Defeater

“defeasible_fact_1": "~fly(tweety)",
"counter_fact_1": "fly(tweety)",
"defeater_1": "fly(tweety)"

Defeater

Query Complement

"mark": "U"

Label Mark
"mark": "D"

Label Mark

Argumentation Process

Logic Solver

Fig. 2. Proposed CoT framework for solving DeLP problem.
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cies among defeasible conclusions, we task LLMs with solving the closure of the
program. This closure comprises two components: strict facts and defeasible
facts. The fact type depends on whether its derivation involves defeasible rules,
i.e., a defeasible fact indicates its corresponding derivation is defeasible. We
provide instructions to LLMs for discerning between these two types of facts
and for deriving them. The prompt template resembles that used for extracting
information. After obtaining the closure, if the query (or its complement) ex-
ists in the set of strict facts or does not exist in any of sets, we can conclude the
question with either YES/NO or UNKNOWN. If the problem is not solved yet,
all resulting outcomes will be stored in memory for subsequent argumentation
process.

4.3 Argumentation Process

After collecting the problem information in json format, our focus shifts to
find the possible warrant of the query argument (or its complement argument),
which is the core of DeLP computation algorithm. The most intricate aspect
involves analyzing the dialectical tree, which requires detecting defeaters of the
arguments recursively. Employing a divide and conquer strategy, we divide the
entire process into three components: conducting derivation, detecting defeater
and marking nodes, as depicted in Figure 2. These smaller sub-tasks, which
are more manageable for LLMs, aid in making the reasoning process more
generalizable to complex problems.

Following each argumentation step, we recursively initiate this process by
designating the query argument as the defeaters. In every reasoning step, LLM
executes the current task solely based on the extracted information, without
access to the original program. This approach ensures causal reasoning and
reduces model hallucination. Moreover, it enhances response interpretability,
facilitating easy identification and rectification of potential errors. Finally after
the recursion termination, label marking of the dialectical tree is conducted to
obtain the answer.

5 Experiments

In this section, we report the performance of LLMs on various DeLP problems
and analyze the performance gaps. Additionally, we conduct detailed case
studies on specific instances of failure.

5.1 Experimental settings

Implementation details. We employ several advanced language models,
namely the GPT-3.5-Turbo API model, GPT-4-Turbo API model and the two
open-source Llama-3 models (8B-Instruct and 70B-Instruct), to conduct a se-
ries of experiments. These models are chosen for their robust performance
characteristics and versatility in handling complex language tasks.

To rigorously test the capacity of these LLMs for multi-step reasoning, we
utilize a specific system message prompt: “Let’s solve a DeLP problem de-
scribed by a JSON object step by step.” This prompt is designed to simulate
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Model D0 D1 D2 D≥3 Average

700028Llama-3-8B
700229Llama-3-70B .75
800430GPT-3.5-Turbo .5
16092630GPT-4-Turbo .25

Table 2
Number of problems solved on each sub dataset.

a scenario that requires the model to engage in sequential decision making
and problem solving, reflective of real-world applications. For the format of
responses, the JSON format can ensure that the outputs are uniformly orga-
nized and easily interpretable, facilitating subsequent analysis of the models’
reasoning processes.

Problem scoring. For the evaluation metric, simply checking the final
answer is not sufficient. In this defeasible reasoning task, we value each result
obtained at every reasoning step, encompassing Information Extraction, Solve
Closure, Conducting Derivation, and Detecting Defeater. In this setup, LLMs
are allowed to access ground truth results of preceding steps during the scoring
evaluation. Specifically, our approach employs a score accumulation strategy,
tallying scores across these steps. After each step, the solver compares the
result with the standard answer and assigns a score of 1 for correctness, and
0 otherwise. As a consequence, the total score of one problem varies based on
the its difficulty, with deeper reasoning and more steps correlating to higher
total scores. This scoring methodology is justified, as more complex problems
naturally merit higher score.

Due to the inherent stochasticity in the sequence generation of large lan-
guage models, we conducted three experimental runs and reported the averaged
score. In each run, LLMs could get feedback of whether the intermediate an-
swer is correct and if the answer is wrong, the LLMs can retry to answer. Note
that here the solver only tells the model whether the answer is right. No further
ground truth information is provided. By default, we set the number of tries
to be 3. Furthermore, we track the number of problems successfully resolved
in the first run to show whether LLMs can consistently and accurately solve
DeLP problems.

5.2 Main results

Number of solved problems. We enumerate the number of problems solved
in each subset in Table 2. It should be noted that each subset contains 30 prob-
lems, as mentioned in Section 3. Given that our task involves multi-step rea-
soning, any error could lead to the failure of problem resolution. The difficulty
of the problems heavily influences performance. The table clearly illustrates
a significant decline in the number of problems solved as the difficulty level
escalates.

All models perform well on the simplest subset, D0, demonstrating their
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Model
D1 D2 D≥3

Pct.ScorePct.ScorePct.Score

1Llama-3-8B . 4167 . 267% . 3387 . 306% . 2202 .73%
2Llama-3-70B . 5211 . 367% . 4597 . 467% . 3119 .47%
2GPT-3.5-Turbo . 6458 . 458% . 5688 . 609% . 4505 .51%
3GPT-4-Turbo . 9271 . 683% . 7987 . 904% . 7042 .83%

Table 3
Score on each sub dataset.

proficiency in first-order logic inference. However, for more complex subsets
(D1, D2, D≥3), there is a pronounced decrease in performance, particularly
evident in the Llama models. In the most complex tasks, all models fail, indi-
cating that LLMs struggle significantly with formal defeasible reasoning tasks,
suggesting that these models are far from being applicable in such contexts.
The GPT-4-Turbo model outperforms other models across all categories, solv-
ing significantly more problems in theD1 and D2 subsets compared to its peers.
This performance indicates a superior capacity in managing complex reasoning
tasks. Conversely, the Llama-3-8B model exhibits difficulties with any prob-
lems beyond the simplest, highlighting potential limitations in its reasoning
abilities or deficiencies in its training data.

Score. The scoring mechanism adopted provides a more informative metric
by evaluating each step of the problem-solving process. This methodology
mitigates the impact of cumulative errors in multi-step reasoning, thus focusing
the evaluation on the efficacy of individual reasoning steps rather than on
the overall problem-solving capability. This approach can also be viewed as
an ablation study where the influence of accumulated errors is systematically
removed at each reasoning step.

The scores obtained by the LLMs are depicted in Table 3, where the av-
eraged score and the percentage of obtained score over total score are listed.
First we can get a similar conclusion that across all models, there is a noticeable
trend where performance decreases as task complexity increases. The GPT-4-
Turbo model consistently outperforms other models with a significant margin.
However, though with the aid of logic solver, the score percentage only attain
70.83% in dataset D3, showing poor performance in formal defeasible reasoning
especially in argumentation process. The lower performance in dataset D≥3,
even with support from a logic solver, underscores the inherent complexity of
formal defeasible reasoning. Defeasible reasoning involves not only understand-
ing the basic premises but also effectively handling inconsistency, counterargu-
ments, and overriding principles which are common in real-world scenarios.
The performance drop in complex datasets suggests that current LLMs, while
powerful in first order logic, may still struggle with the nuanced structures of
arguments required in defeasible reasoning. This includes difficulties in priori-
tizing conflicting information and dynamically adjusting conclusions based on
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% Fact
nice('Bob').
white('Anne').
kind('Charlie').

% Strict Rule
~big(X) <- nice(X). 
young(X) <- white(X).
~green(X) <- ~blue(X).

% Defeasible Rule
cold(X) -< ~big(X). 
green(X) -< nice(X). 
blue(X) -< nice(X),cold(X). 
blue(X) -< ~ big(X),white(X).

Program

"query": "blue(Bob)",
"derivation_query": [

"nice(Bob)",
"green(Bob) -< nice(Bob)",
"~green(Bob) <- ~blue(Bob)",
"blue(Bob)"

]

"query": "blue(Bob)",
"derivation_query": [

"nice(Bob)", 
"~big(Bob) <- nice(Bob)", 
"blue(Bob) -< ~big(Bob),white(Bob)"

]

"query": "blue(Bob)",
"derivation_query": [

"nice(Bob)", 
"~big(Bob) <- nice(Bob)",
"cold(Bob) -< ~big(Bob)", 
"blue(Bob) -< nice(Bob),cold(Bob)"

]

~blue('Bob')~blue('Bob')

Query

Derivation adopts
contraposition 
which is not allowed

Derivation contains 
a non-existing fact 
“white(Bob)”

Response

Fig. 3. Wrong example of hallucination and derivation error.

new evidence. Moreover, larger models generally perform better on tasks, this
suggests that larger model sizes may be better suited for complex reasoning
tasks, possibly due to their ability to integrate and process larger amounts of
information and more nuanced patterns.

For the following study and analysis, we analyze the examples and cor-
responding performance using GPT-4-Turbo model as representative for its
better performance.

5.3 Case study and Error tracing

Table 2 on first two datasets shows that the Extract information and Solve Clo-
sure steps are relatively accurate. The complicated defeasible reasoning steps,
which is tend to make mistakes, are mainly get derivation and inconsistency
judgement, corresponding to Conducting Derivation, and Detecting Defeater
in the argumentation process. To trace possible errors in the inference stage,
we let the solver to point out concrete wrong step and mistakes in the task. By
checking the errors, we summarize as following reasons.

Hallucination. LLMs frequently generate or utilize non-existent facts
and rules, a phenomenon often referred to as ”hallucination.” For instance,
as depicted in Figure 3, the first incorrect derivation includes a fictitious
fact, white(Bob), which appears to be erroneously influenced by the actual
fact white(Anne). This type of error suggests that the model may strug-
gle with distinguishing between similar entities and applying facts correctly.
Moreover, there are indications that models sometimes fail to grasp funda-
mental operations such as string replacement and the application of nega-
tion in logic. Continuing with the example from Figure 3, the LLM might
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generate a grounded literal like blue(Bob) –<nice(Anne), cold(Bob) or a nega-
tion ∼blue(Bob) –<nice(Bob), cold(Bob). These errors demonstrate a misun-
derstanding in the handling of logical constructs and the dynamics of logical
negation, which are critical for accurate reasoning and interpretation within
logical frameworks. Such hallucinations not only undermine the reliability of
the model outputs but also pose significant challenges in applications where
factual accuracy is paramount.

Derivation Error. The model also makes mistakes when generating
derivation sequences, particularly with longer sequences. We observe that er-
rors become more prevalent in derivations that extend beyond five steps, a
phenomenon that is similar to issues encountered in FOL as discussed by [8].
Despite instructions to utilize formal language to structure the derivations into
a coherent chain, the model sometimes commits basic errors such as parsing
mistakes and neglecting the premises of rules. An additional noteworthy exam-
ple is illustrated in Figure 3, where the LLM attempts to prove by contraposi-
tion, a method not permitted within the DeLP framework. This misapplication
of a reasoning strategy highlights a deeper issue with the model’s comprehen-
sion of the rules and constraints specific to the logic system it is operating
within.

Error to track Inconsistency. Despite explicit instructions in the prompt
that defeasible facts may conflict, the model often selects one of two comple-
mentary literals as the defeasible fact. This behavior demonstrates that LLMs
struggle with defeasible reasoning, which requires the management of inconsis-
tency and incomplete information. The ability to handle such complexities is
crucial for models engaged in tasks involving nuanced logical deductions where
facts can be overridden or contradicted by more compelling evidence. Further-
more, another significant observation is that LLMs sometimes fail to identify
all relevant pairs of arguments and counter-arguments. This limitation shows
a basic problem with the models’ ability to completely understand all the ar-
guments in a DeLP problem.

6 Conclusion

In this paper, we investigate the formal defeasible reasoning capabilities of large
language models using the DeLP framework. Our methodology involves creat-
ing a synthetic dataset with varying depths of reasoning to challenge the LLMs,
and we introduced a Chain-of-Thought method to enhance their multi-step
reasoning processes. Despite these efforts, our experiments demonstrate that
LLMs struggle with managing defeasible information, highlighting a significant
limitation in their ability to handle inconsistencies and incomplete knowledge
effectively. This underscores a gap in the reasoning abilities of current LLMs
compared to human-level intelligence, signaling the need for further research
and development in this domain. The experimental analysis advances under-
standings of LLMs’ capabilities in formal logical reasoning and sets the stage
for further developments in this critical area of AI research.
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