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Centers of Quantum-Wajsberg Algebras

Lavinia Corina Ciungu
Department of Mathematics, St Francis College, New York, USA

lciungu@sfc.edu

Abstract

We define the Wajsberg-center and the OML-center of a quantum-Wajsberg
algebra, and study their structures. We prove that the Wajsberg-center is a
Wajsberg subalgebra of a quantum-Wajsberg algebra, and that it is a distribu-
tive sublattice of its corresponding poset. If the quantum-Wajsberg algebra is
quasi-linear, we show that the Wajsberg-center is a linearly ordered Wajsberg
algebra. We also show that the lattice subreduct of the Wajsberg-center is a
Kleene algebra. Furthermore, we prove that the OML-center is an orthomodu-
lar lattice, and that the orthomodular lattices form a subvariety of the variety
of quantum-Wajsberg algebras.

1 Introduction
In the last decades, the study of algebraic structures related to the logical founda-
tions of quantum mechanics became a central topic of research. Generally known
as quantum structures, these algebras serve as algebraic semantics for the classical
and non-classical logics, as well as for the quantum logics. As algebraic structures
connected with quantum logics we mention the following algebras: bounded involu-
tive lattices, De Morgan algebras, ortholattices, orthomodular lattices, MV algebras,
quantum MV algebras.

The quantum-MV algebras (or QMV algebras) were introduced by R. Giuntini
in [7] as non-lattice generalizations of MV algebras ([3]) and as non-idempotent
generalizations of orthomodular lattices ([1, 26]). These structures were intensively
studied by R. Giuntini ([8, 9, 10, 11, 12]), A. Dvurečenskij and S. Pulmannová ([5]),
R. Giuntini and S. Pulmannová ([13]) and by A. Iorgulescu in [20, 21, 22, 23, 24, 25].
An extensive study on the orthomodular structures as quantum logics can be found

The author is very grateful to the anonymous referees for their useful remarks and suggestions on
the subject that help improve the presentation.
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Ciungu

in [31]. Many algebraic semantics for the classical and non-classical logics studied
so far (pseudo-effect algebras, residuated lattices, pseudo-MV/BL/MTL algebras,
bounded non-commutative Rℓ-monoids, pseudo-hoops, pseudo-BCK/BCI algebras),
as well as their commutative versions, are quantum-B algebras.

Quantum-B algebras, defined and investigated by W. Rump and Y.C. Yang
([33, 32]), arise from the concept of quantales which was introduced in 1984 as a
framework for quantum mechanics with a view toward non-commutative logic ([29]).
Interesting results on quantum-B algebras have been presented in [34, 35, 15, 16].

We redefined in [4] the quantum-MV algebras starting from involutive BE alge-
bras and we introduced and studied the notion of quantum-Wajsberg algebras (QW
algebras, for short). We proved that any Wajsberg algebra is a quantum-Wajsberg
algebra, and the commutative quantum-Wajsberg algebras are Wajsberg algebras.
It was also shown that the Wajsberg algebras are both quantum-Wajsberg algebras
and commutative quantum-B algebras.

In this paper, we define the Wajsberg-center or the commutative center of a
quantum-Wajsberg algebra X as the set of those elements of X that commute with
all other elements of X. We study certain properties of the Wajsberg-center, and
we prove that the Wajsberg-center is a Wajsberg subalgebra of X, and it is also a
distributive sublattice of its corresponding poset. If the quantum-Wajsberg algebra
is quasi-linear, we show that the Wajsberg-center is a linearly ordered Wajsberg
algebra. We also prove that the lattice subreduct of the Wajsberg-center is a Kleene
algebra. Furthermore, we define the OML-center of a quantum-Wajsberg algebra,
and study its properties. We prove that the OML-center is an orthomodular lattice,
and that the orthomodular lattices form a subvariety of the variety of quantum-
Wajsberg algebras. Additionally, we prove new properties of quantum-Wajsberg
algebras.

2 Preliminaries

In this section, we recall some basic notions and results regarding BCK algebras,
Wajsberg algebras, BE algebras and quantum-Wajsberg algebras that will be used
in the paper. Additionally, we prove new properties of quantum-Wajsberg algebras.
For more details regarding the quantum-Wajsberg algebras we refer the reader to
[4].

Starting from the systems of positive implicational calculus, weak systems of
positive implicational calculus and BCI and BCK systems, in 1966 Y. Imai and K.
Isèki introduced the BCK algebras ([17]). BCK algebras are also used in a dual form,
with an implication → and with one constant element 1, that is the greatest element
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([28]). A (dual) BCK algebra is an algebra (X, →, 1) of type (2, 0) satisfying the fol-
lowing conditions, for all x, y, z ∈ X: (BCK1) (x → y) → ((y → z) → (x → z)) = 1;
(BCK2) 1 → x = x; (BCK3) x → 1 = 1; (BCK4) x → y = 1 and y → x = 1 imply
x = y. In this paper, we use the dual BCK algebras. If (X, →, 1) is a BCK algebra,
for x, y ∈ X we define the relation ≤ by x ≤ y if and only if x → y = 1, and ≤ is a
partial order on X.

Wajsberg algebras were introduced in 1984 by Font, Rodriguez and Torrens
in [6] as algebraic model of ℵ0-valued Łukasiewicz logic. A Wajsberg algebra is
an algebra (X, →,∗ , 1) of type (2, 1, 0) satisfying the following conditions for all
x, y, z ∈ X: (W1) 1 → x = x; (W2) (y → z) → ((z → x) → (y → x)) = 1; (W3)
(x → y) → y = (y → x) → x; (W4) (x∗ → y∗) → (y → x) = 1. Wajsberg algebras
are bounded with 0 = 1∗, and they are involutive. It was proved in [6] that Wajsberg
algebras are termwise equivalent to MV algebras.

BE algebras were introduced in [27] as algebras (X, →, 1) of type (2, 0) satisfying
the following conditions, for all x, y, z ∈ X: (BE1) x → x = 1; (BE2) x → 1 = 1;
(BE3) 1 → x = x; (BE4) x → (y → z) = y → (x → z). A relation ≤ is defined
on X by x ≤ y iff x → y = 1. A BE algebra X is bounded if there exists 0 ∈ X
such that 0 ≤ x, for all x ∈ X. In a bounded BE algebra (X, →, 0, 1) we define
x∗ = x → 0, for all x ∈ X. A bounded BE algebra X is called involutive if x∗∗ = x,
for any x ∈ X.
A BE algebra X is called commutative if (x → y) → y = (y → x) → x, for all
x, y ∈ X. A bounded BE algebra X is called involutive if x∗∗ = x, for any x ∈ X.
Obviously, any BCK algebra is a BE algebra, but the exact connection between BE
algebras and BCK algebras is made in the papers [18, 19]: a BCK algebra is a BE
algebra satisfying (BCK4) (antisymmetry) and (BCK1).

A suplement algebra (S-algebra, for short) is an algebra (X, ⊕,∗ , 0, 1) of type
(2, 1, 0, 0) satisfying the following axioms for all x, y, z ∈ X: (S1) x ⊕ y = y ⊕ x; (S2)
x ⊕ (y ⊕ z) = (x ⊕ y) ⊕ z; (S3) x ⊕ x∗ = 1; (S4) x ⊕ 0 = x; (S5) x∗∗ = x; (S6) 0∗ = 1;
(S7) x ⊕ 1 = 1 ([14]).
The following additional operations can be defined in a supplement algebra:
x ⊙ y = (x∗ ⊕ y∗)∗, x ⋒S y = (x ⊕ y∗) ⊙ y, x ⋓S y = (x ⊙ y∗) ⊕ y.
A quantum-MV algebra (QMV algebra, for short) is an S-algebra (X, ⊕,∗ , 0, 1) sat-
isfying the following axiom for all x, y, z ∈ X ([8]):
(QMV ) x ⊕ ((x∗ ⋒S y) ⋒S (z ⋒S x∗)) = (x ⊕ y) ⋒S (x ⊕ z).

Lemma 2.1. Let (X, →, 1) be a BE algebra. The following hold for all x, y, z ∈ X:
(1) x → (y → x) = 1;
(2) x ≤ (x → y) → y.
If X is bounded, then:
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(3) x → y∗ = y → x∗;
(4) x ≤ x∗∗.
If X is involutive, then:
(5) x∗ → y = y∗ → x;
(6) x∗ → y∗ = y → x;
(7) (x → y)∗ → z = x → (y∗ → z);
(8) x → (y → z) = (x → y∗)∗ → z;
(9) (x∗ → y)∗ → (x∗ → y) = (x∗ → x)∗ → (y∗ → y).

Proof. (1)-(6) See [4].
(7) Applying (BE4) we get: (x → y)∗ → z = z∗ → (x → y) = x → (z∗ → y) = x →
(y∗ → z).
(8) Using (BE4), we have: x → (y → z) = x → (z∗ → y∗) = z∗ → (x → y∗) = (x →
y∗)∗ → z.
(9) Applying twice (7), we get: (x∗ → y)∗ → (x∗ → y) = x∗ → (y∗ → (x∗ → y)) =
x∗ → (x∗ → (y∗ → y)) = (x∗ → x)∗ → (y∗ → y).

In a BE algebra X, we define the additional operation x ⋓ y = (x → y) → y. If
X is involutive, we define the operations x ⋒ y = ((x∗ → y∗) → y∗)∗ = (x∗ ⋓ y∗)∗,
x ⊙ y = (x → y∗)∗ = (y → x∗)∗, and the relation ≤Q by x ≤Q y iff x = x ⋒ y.

Proposition 2.2. Let X be an involutive BE algebra. Then the following hold for
all x, y, z ∈ X:
(1) x ≤Q y implies x ≤ y, x = y ⋒ x and y = x ⋓ y;
(2) ≤Q is reflexive and antisymmetric;
(3) (x ⋒ y) → z = (y → x) → (y → z);
(4) (x ⋒ y)∗ → (y → x)∗ = y ⋓ (y → x)∗;
(5) (x ⋒ (y ⋒ z))∗ = ((z → x) ⋒ (z → y)) → z∗;
(6) x, y ≤Q z and z → x = z → y imply x = y; (cancellation law)
(7) x ⋒ y = y ⊙ (y → x).

Proof. (1) − (3) See [4].
(4) We have:

(x ⋒ y)∗ → (y → x)∗ = ((x∗ → y∗) → y∗) → (y → x)∗

= ((y → x) → y∗) → (y → x)∗

= (y → (y → x)∗) → (y → x)∗ = y ⋓ (y → x)∗.
(5) Aplying (3), we get:

((z → x) ⋒ (z → y)) → z∗ = ((x∗ → z∗) ⋒ (y∗ → z∗)) → z∗

= ((y∗ → z∗) → (x∗ → z∗)) → ((y∗ → z∗) → z∗)
= (x∗ → ((y∗ → z∗) → z∗)) → ((y∗ → z∗) → z∗)
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= (x∗ → (y∗ ⋓ z∗)) → (y∗ ⋓ z∗)
= (x∗ → (y ⋒ x)∗) → (y ⋒ z)∗

= (x ⋒ (y ⋒ z))∗.
(6) Since x, y ≤Q z and z → x = z → y, we have:

x = x ⋒ z = ((x∗ → z∗) → z∗)∗ = ((z → x) → z∗)∗

= ((z → y) → z∗)∗ = ((y∗ → z∗) → z∗)∗ = y ⋒ z = y.
(7) We have y ⊙ (y → x) = (y → (y → x)∗)∗ = ((y → x) → y∗)∗ = ((x∗ → y∗) →
y∗)∗ = x ⋒ y.

A (left-)quantum-Wajsberg algebra (QW algebra, for short) (X, →,∗ , 1) is an
involutive BE algebra (X, →,∗ , 1) satisfying the following condition for all x, y, z ∈
X:
(QW) x → ((x ⋒ y) ⋒ (z ⋒ x)) = (x → y) ⋒ (x → z).
Condition (QW) is equivalent to the following conditions:
(QW1) x → (x ⋒ y) = x → y;
(QW2) x → (y ⋒ (z ⋒ x)) = (x → y) ⋒ (x → z).

Definition 2.3. ([20]) A (left-)m-BE algebra is an algebra (X, ⊙,∗ , 1) of type
(2, 1, 0) satisfying the following properties, for all x, y, z ∈ X: (PU) 1⊙x = x = x⊙1;
(Pcomm) x ⊙ y = y ⊙ x; (Pass) x ⊙ (y ⊙ z) = (x ⊙ y) ⊙ z; (m-L) x ⊙ 0 = 0; (m-Re)
x ⊙ x∗ = 0, where 0 := 1∗.

Note that, according to [25, Cor. 17.1.3], the involutive (left-)BE algebras
(X, →,∗ , 1) are term-equivalent to involutive (left-)m-BE algebras (X, ⊙,∗ , 1), by
the mutually inverse transformations ([20, 25]):

Φ : x ⊙ y := (x → y∗)∗ and Ψ : x → y := (x ⊙ y∗)∗.

Definition 2.4. ([24, Def. 3.10]) A (left-)quantum-MV algebra, or a (left-)QMV
algebra for short, is an involutive (left-)m-BE algebra (X, ⊙,∗ , 1) verifying the fol-
lowing axiom: for all x, y, z ∈ X,
(Pqmv) x ⊙ ((x∗ ⋓ y) ⋓ (z ⋓ x∗)) = (x ⊙ y) ⋓ (x ⊙ z).

Proposition 2.5. The (left-)quantum-Wajsberg algebras are term-equivalent to (left-
)quantum-MV algebras.

Proof. We prove that the axioms (Pqmv) and (QW ) are equivalent. Using the
transformation Φ, from (Pqmv) we get:

x⊙((x∗⋓y)⋓(z⋓x∗)) = (x → ((x∗⋓y)⋓(z⋓x∗))∗)∗ = (x → ((x⋒y∗)⋒(z∗⋒x)))∗

and
(x ⊙ y) ⋓ (x ⊙ z) = (x → y∗)∗ ⋓ (x → z∗)∗ = ((x → y∗) ⋒ (x → z∗))∗,

hence (Pqmv) becomes:
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(x → ((x ⋒ y∗) ⋒ (z∗ ⋒ x)))∗ = ((x → y∗) ⋒ (x → z∗))∗,
for all x, y, z ∈ X. Replacing y by y∗ and z by z∗, we get axiom (QW). Similarly
axiom (QW) implies axiom (Pqmv).

In what follows, by quantum-MV algebras and quantum-Wajsberg algebras we
understand the left-quantum-MV algebras and left-quantum-Wajsberg algebras, re-
spectively.

Proposition 2.6. ([4]) Let X be a quantum-Wajsberg algebra. The following hold
for all x, y, z ∈ X:
(1) x → (y ⋒ x) = x → y and (x → y) → (y ⋒ x) = x;
(2) x ≤Q x∗ → y and x ≤Q y → x;
(3) x ≤ y iff y ⋒ x = x;
(4) (x → y) ⋓ (y → x) = 1.
If x ≤Q y, then:
(5) y = y ⋓ x;
(6) y∗ ≤Q x∗;
(7) y → z ≤Q x → z and z → x ≤Q z → y;
(8) x ⋒ z ≤Q y ⋒ z and x ⋓ z ≤Q y ⋓ z;
(9) x ⊙ z ≤Q y ⊙ z.

Proposition 2.7. Let X be a quantum-Wajsberg algebra. The following hold, for
all x, y, z ∈ X:
(1) (x ⋒ y) ⋒ (y ⋒ z) = (x ⋒ y) ⋒ z;
(2) ≤Q is transitive;
(3) (z ⋒ x) → (y ⋒ x) = (z ⋒ x) → y;
(4) x ≤Q y and y ≤ x imply x = y;
(5) x ≤Q y implies x ⋒ (y ⋒ z) = x ⋒ z;
(6) z ⋒ ((y∗ → z) ⋒ (x∗ → y)) = z ⋒ (x∗ → y);
(7) x ⋓ (x → y)∗ = x;
(8) x = y → x iff y = x → y;
(9) x ⋒ y, y ⋒ x ≤Q x → y.

Proof. (1) − (3) See [4].
(4) By Proposition 2.6(3), y ≤ x implies x⋒y = y. Since x ≤Q y, we have x⋒y = x,
hence x = y.
(5) Using (1), (x⋒ y)⋒ (y ⋒ z) = (x⋒ y)⋒ z. Since x ≤Q y implies x⋒ y = x, we get
x ⋒ (y ⋒ z) = x ⋒ z.
(6) It follows by (5), since z ≤Q y∗ → z;
(7) By Proposition 2.6(2),(5), we have x∗ ≤Q x → y, so that (x → y)∗ ≤Q x and
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x ⋓ (x → y)∗ = x.
(8) Suppose x = y → x, so that y∗ ⋒ x∗ = (y ⋓ x)∗ = ((y → x) → x)∗ = (x → x)∗ =
1∗ = 0. Using (QW1), we get y = (y∗)∗ = y∗ → 0 = y∗ → (y∗ ⋒ x∗) = y∗ → x∗ =
x → y. The converse follows similarly.
(9) Using Proposition 2.6(2), we have y ≤Q x → y, so that (x → y)∗ ≤Q y∗ ≤Q

(x∗ → y∗) → y∗ = (x ⋒ y)∗. Hence x ⋒ y ≤Q x → y. Similarly (x → y)∗ ≤ (x →
y) → x∗ = (y∗ → x∗) → x∗ = (y ⋒ x)∗. Thus y ⋒ x ≤Q x → y.

By Propositions 2.2(2), 2.7(2), in a quantum-Wajsberg algebra X, ≤Q is a partial
order on X.
A quantum-Wajsberg algebra X is called commutative if x⋓y = y⋓x, or equivalently
x ⋒ y = y ⋒ x for all x, y ∈ X.
Since:
- commutative BE algebras are commutative BCK algebras ([36]]),
- bounded commutative BCK are term-equivalent to MV algebras ([30]) and
- Wajsberg algebras are term-equivalent to MV algebras ([6]),
it follows that bounded commutative BE algebras are bounded commutative BCK
algebras, hence are term-equivalent to MV algebras, hence to Wajsberg algebras.
Hence the commutative quantum-Wajsberg algebras are the Wajsberg algebras.
It was proved in [4] that a quantum-Wajsberg algebra is a bounded commutative
BCK algebra, that is a Wajsberg algebra, if and only if the relations ≤ and ≤Q

coincide.

Proposition 2.8. ([4]) Let (X, →, 0, 1) be a bounded commutative BCK algebra.
The following hold for all x, y, z ∈ X:
(1) x ≤Q y and x ≤Q z imply x ≤Q y ⋒ z;
(2) y ≤Q x and z ≤Q x imply y ⋓ z ≤Q x;
(3) x ≤Q y implies x ⋓ z ≤Q y ⋓ z and x ⋒ z ≤Q y ⋒ z.

3 The Wajsberg-center of quantum-Wajsberg algebras
In this section, we investigate the commutativity property of quantum-Wajsberg
algebras. We define the Wajsberg-center or the commutative center of a quantum-
Wajsberg algebra X as the set of those elements of X that commute with all other
elements of X. We study certain properties of the Wajsberg-center, and prove that
the Wajsberg-center is a Wajsberg subalgebra of X. In what follows, (X, →,∗ , 1)
will be a quantum-Wajsberg algebra, unless otherwise stated.
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Definition 3.1. We say that the elements x, y ∈ X commute, denoted by xCy, if
x ⋒ y = y ⋒ x.

Definition 3.2. The commutative center of X is the set Z(X) = {x ∈ X | xCy,
for all y ∈ X}.

Obviously 0, 1 ∈ Z(X).

Lemma 3.3. If xCy, then x ⋓ y = y ⋓ x.

Proof. Applying twice Proposition 2.6(1), we have:
x ⋓ y = (x → y) → y = (x → y) → ((y → x) → (x ⋒ y))

= (y → x) → ((x → y) → (x ⋒ y))
= (y → x) → ((x → y) → (y ⋒ x)) = (y → x) → x = y ⋓ x.

Lemma 3.4. Let x, y ∈ X. The following are equivalent:
(a) xCy;
(b) (x → y) → (x ⋒ y) = x.

Proof. (a) ⇒ (b) By Proposition 2.6(1), we get x = (x → y) → (y⋒x) = (x → y) →
(x ⋒ y).
(b) ⇒ (a) Suppose (x → y) → (x ⋒ y) = x, and applying Proposition 2.6(1), we
have: (x → y) → (x ⋒ y) = (x → y) → (y ⋒ x)(= x). Since by Proposition 2.7(9),
x⋒y, y⋒x ≤Q x → y, by cancellation law (Proposition 2.2(6)), we get x⋒y = y⋒x.
Hence xCy.

Proposition 3.5. The following hold:
(1) the relation C is reflexive and symmetric;
(2) if x ≤Q y or y ≤Q x, then xCy;
(3) xCy implies x∗Cy∗;
(4) (x ⋒ y)∗C(x → y)∗.

Proof. (2) If x ≤Q y, then x = x ⋒ y and, by Proposition 2.2(1) we have x = y ⋒ x.
Hence x ⋒ y = y ⋒ x, that is xCy, and similarly y ≤Q x implies xCy.
(3) Using Lemma 3.3, we have: x∗ ⋒y∗ = (x⋓y)∗ = (y⋓x)∗ = y∗ ⋒x∗, hence x∗Cy∗.
(4) Since x ⋒ y ≤Q y ≤Q x → y, we get (x → y)∗ ≤Q (x ⋒ y)∗. Applying (2), it
follows that (x ⋒ y)∗C(x → y)∗.

Corollary 3.6. Z(X) is closed under ∗.

Proof. Let x ∈ Z(X), that is xCz for all z ∈ X. We also have xCz∗, and applying
Lemma 3.3 we have x⋓ z∗ = z∗ ⋓ x. It follows that x∗ ⋒ z = (x⋓ z∗)∗ = (z∗ ⋓ x)∗ =
z ⋒ x∗. Hence x∗ ∈ Z(X).
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Proposition 3.7. If x, y, z ∈ X such that xCy and xCz, then (x⋒y)⋒z = y⋒(x⋒z).

Proof. From x ⋒ y = y ⋒ x, x ⋒ z = z ⋒ x, and applying Proposition 2.7(1),(3), we
get:

(x ⋒ y) ⋒ z = (y ⋒ x) ⋒ z = (y ⋒ x) ⋒ (x ⋒ z)
= (((y ⋒ x)∗ → (x ⋒ z)∗) → (x ⋒ z)∗)∗

= (((y ⋒ x)∗ → (z ⋒ x)∗) → (z ⋒ x)∗)∗

= (((z ⋒ x) → (y ⋒ x)) → (z ⋒ x)∗)∗

= (((z ⋒ x) → y) → (z ⋒ x)∗)∗

= ((y∗ → (z ⋒ x)∗) → (z ⋒ x)∗)∗

= y ⋒ (z ⋒ x) = y ⋒ (x ⋒ z).

Corollary 3.8. If xCy, yCz and xCz, then (x ⋒ y) ⋒ z = z ⋒ (x ⋒ y).

Proof. By hypothesis and using Proposition 3.7, we get:
(x ⋒ y) ⋒ z = y ⋒ (x ⋒ z) = y ⋒ (z ⋒ x) = z ⋒ (y ⋒ x) = z ⋒ (x ⋒ y).

Corollary 3.9. Z(X) is closed under ⋒.

Proof. Let x, y ∈ Z(X) and let z ∈ X. It follows that xCy, yCz, xCz, and by
Corollary 3.8 we get (x ⋒ y) ⋒ z = z ⋒ (x ⋒ y). Hence x ⋒ y ∈ Z(X), that is Z(X) is
closed under ⋒.

Proposition 3.10. Let x, y, z ∈ X such that yCz. Then x → (y ⋒ z) ≤Q (x →
y) ⋒ (x → z).

Proof. From z ⋒ y ≤Q y, we get x → (z ⋒ y) ≤Q x → y, so that (x → y)∗ ≤Q (x →
(z ⋒ y))∗ and (x → (z ⋒ y))∗ → (x → z)∗ ≤Q (x → y)∗ → (x → z)∗. It follows that:

((x → (z ⋒ y))∗ → (x → z)∗)⋒ ((x → y)∗ → (x → z)∗) = (x → (z ⋒ y))∗ → (x →
z)∗.
Similarly, from y⋒z ≤Q z we have x → (y⋒z) ≤Q x → z, hence (x → (y⋒z))⋒(x →
z) = x → (y ⋒ z). Applying Proposition 2.2(5), and taking into consideration that
yCz, we have:

(x → (y ⋒ z)) ⋒ ((x → y) ⋒ (x → z)) =
= ((((x → z) → (x → (y ⋒ z))) ⋒ ((x → z) → (x → y))) → (x → z)∗)∗

= ((((x → (y ⋒ z))∗ → (x → z)∗) ⋒ ((x → y)∗ → (x → z)∗)) → (x → z)∗)∗

= ((((x → (z ⋒ y))∗ → (x → z)∗) ⋒ ((x → y)∗ → (x → z)∗)) → (x → z)∗)∗

= (((x → (z ⋒ y))∗ → (x → z)∗) → (x → z)∗)∗

= (((x → (y ⋒ z))∗ → (x → z)∗) → (x → z)∗)∗

= (x → (y ⋒ z)) ⋒ (x → z) = x → (y ⋒ z).
Hence x → (y ⋒ z) ≤Q (x → y) ⋒ (x → z).

687



Ciungu

Lemma 3.11. If xCy, xCz, yCz, then y ⋒ (z ⋒ x) ≤Q y ⋒ z.

Proof. From z ⋒x = x⋒ z ≤Q z, by Proposition 2.6(8) we get (z ⋒x)⋒ y ≤Q z ⋒ y =
y ⋒ z. Using Corollary 3.8, we get y ⋒ (z ⋒ x) ≤Q y ⋒ z.

Proposition 3.12. If xCy, xCz, yCz, then (x → y) ⋒ (x → z) ≤ x → (y ⋒ z).

Proof. Applying Proposition 2.2(3) and Lemma 3.11, we get:
((x → y) ⋒ (x → z)) → (x → (y ⋒ z)) =

= (x → (y ⋒ z))∗ → ((x → y) ⋒ (x → z))∗

= (x → (y ⋒ z))∗ → ((x → y)∗ ⋓ (x → z)∗)
= (x → (y ⋒ z))∗ → (((x → y)∗ → (x → z)∗) → (x → z)∗)
= ((x → y)∗ → (x → z)∗) → ((x → (y ⋒ z))∗ → (x → z)∗)
= ((x → z) → (x → y)) → ((x → z) → (x → (y ⋒ z)))
= ((z ⋒ x) → y) → ((z ⋒ x) → (y ⋒ z))
= (y ⋒ (z ⋒ x)) → (y ⋒ z) = 1.

It follows that (x → y) ⋒ (x → z) ≤ x → (y ⋒ z).

Proposition 3.13. If xCy, xCz, yCz, then x → (y ⋒ z) = (x → y) ⋒ (x → z).

Proof. It follows by Propositions 3.10, 3.12, 2.7(4).

Corollary 3.14. If y ∈ Z(X) and x, z ∈ X, then (z ⋒ x)∗ → ((z → x)∗ ⋒ y) =
((z ⋒ x)∗ → (z → x)∗) ⋒ ((z ⋒ x)∗ → y).

Proof. It follows by Propositions 3.5(4) and 3.13, since yC(z ⋒ x)∗ and yC(z →
x)∗.

Corollary 3.15. If x, y, z ∈ Z(X), then (z ⋒ x)∗ → y = (y∗ → z) ⋒ (x∗ → y).

Proof. Since y ∈ Z(X) implies y∗ ∈ Z(X), applying Proposition 3.13, we get:
(z ⋒ x)∗ → y = y∗ → (z ⋒ x) = (y∗ → z) ⋒ (y∗ → x) = (y∗ → z) ⋒ (x∗ → y).

Proposition 3.16. If x, y ∈ Z(X), then x∗ → y ∈ Z(X).

Proof. Let x, y ∈ Z(X) and let z ∈ X. Then xCz and yC(z → x)∗. Applying Lemma
3.4, we get:

z = (z → x) → (z ⋒ x) = ((z → x)∗)∗ → (z ⋒ x) and
(z → x)∗ = ((z → x)∗ → y) → ((z → x)∗ ⋒ y),

respectively. It follows that:
z = ((z → x)∗)∗ → (z ⋒ x)

= (((z → x)∗ → y) → ((z → x)∗ ⋒ y))∗ → (z ⋒ x)
= ((z → x)∗ → y) → (((z → x)∗ ⋒ y)∗ → (z ⋒ x)) (by Lemma 2.1(7))
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= ((z → x)∗ → y) → ((z ⋒ x)∗ → ((z → x)∗ ⋒ y))
= ((z → x)∗ → y) → (((z⋒x)∗ → (z → x)∗)⋒ ((z⋒x)∗ → y)) (by Corollary

3.14)
= ((z → x)∗ → y) → (((x ⋒ z)∗ → (z → x)∗) ⋒ ((z ⋒ x)∗ → y))
= ((z → x)∗ → y) → ((z ⋓ (z → x)∗) ⋒ ((z ⋒ x)∗ → y)) (by Proposition

2.2(4))
= ((z → x)∗ → y) → (z ⋒ ((z ⋒ x)∗ → y)) (by Proposition 2.7(7))
= ((z → x)∗ → y) → (z ⋒ ((y∗ → z) ⋒ (x∗ → y)) (by Corrolary 3.15)
= ((z → x)∗ → y) → (z ⋒ (x∗ → y)) (by Proposition 2.7(6))
= (z → (x∗ → y)) → (z ⋒ (x∗ → y)) (by Lemma 2.1(7)).

Using Lemma 3.4, we conclude that x∗ → y ∈ Z(X).

Corollary 3.17. If x, y ∈ Z(X), then x → y ∈ Z(X).

Proof. Since x ∈ Z(X), by Corollary 3.6 we get x∗ ∈ Z(X). Applying Proposition
3.16, x∗, y ∈ Z(X) implies x → y ∈ Z(X).

Theorem 3.18. (Z(X), →, 0, 1) is a Wajsberg subalgebra of X.

Proof. Since by Corollary 3.17, x, y ∈ Z(X) implies x → y ∈ Z(X), it follows that
Z(X) is closed under →. Moreover 0, 1 ∈ Z(X), hence it is a quantum-Wajsberg
subalgebra of X. Since x, y ∈ Z(X) implies x ⋒ y = y ⋒ x, (Z(X), →, 0, 1) is
a commutative quantum-Wajsberg algebra, that is a bounded commutative BCK
subalgebra of X. Hence it is a Wajsberg subalgebra of X.

Corollary 3.19. A quantum-Wajsberg algebra X is a Wajsberg algebra if and only
if Z(X) = X.

Taking into consideration the above results, the commutative center Z(X) will
be also called the Wajsberg-center of X. Similarly as in [7] for the case of QMV
algebras, we define the notion of a quasi-linear quantum-Wajsberg algebra.

Definition 3.20. A QW algebra X is said to be quasi-linear if, for all x, y ∈ X,
x ≰Q y implies y < x.

Proposition 3.21. If X is a quasi-linear QW algebra, then Z(X) is a linearly
ordered Wajsberg algebra.

Proof. According to [4], a quantum-Wajsberg algebra is a Wajsberg algebra if and
only if the relations ≤ and ≤Q coincide. Since Z(X) is a quasi-linear Wajsberg
algebra, x ≰ y implies y < x, that is Z(X) is linearly ordered.
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4 The lattice structure of Wajsberg-centers
We study certain lattice properties of the Wajsberg-center of a quantum-Wajsberg
algebra, and prove that the Wajsberg-center of a quantum-Wajsberg algebra X is a
distributive sublattice of the poset (X, ≤Q, 0, 1). If the quantum-Wajsberg algebra
is quasi-linear, we prove that the Wajsberg-center is a linearly ordered Wajsberg
algebra. Finally, we show that the lattice subreduct of the Wajsberg-center is a
Kleene algebra. In what follows, (X, →,∗ , 1) will be a quantum-Wajsberg algebra,
unless otherwise stated.

Proposition 4.1. The following hold for all x, y, z ∈ Z(X):
(1) x → (y ⋒ z) = (x → y) ⋒ (x → z) (distributivity of → over ⋒);
(2) x ⊙ (y ⋓ z) = (x ⊙ y) ⋓ (x ⊙ z) (distributivity of ⊙ over ⋓);
(3) x ⋒ (y ⋓ z) = (x ⋒ y) ⋓ (x ⋒ z) (distributivity of ⋒ over ⋓);
(4) x ⋓ (y ⋒ z) = (x ⋓ y) ⋒ (x ⋓ z) (distributivity of ⋓ over ⋒).

Proof. (1) It follows by Proposition 3.13.
(2) Applying (1), we get:

x ⊙ (y ⋓ z) = (x → (y ⋓ z)∗)∗ = (x → (y∗ ⋒ z∗))∗

= ((x → y∗) ⋒ (x → z∗))∗ = (x → y∗)∗ ⋓ (x → z∗)∗

= (x ⊙ y) ⋓ (x ⊙ z).
(3) By commutativity we have y, z ≤Q y ⋓ z, so that (y ⋓ z) → x ≤Q y → x, z → x.
Applying Propositions 2.6(9) and 2.2(7), we get:

y ⊙ ((y ⋓ z) → x) ≤Q y ⊙ (y → x) = x ⋒ y and
z ⊙ ((y ⋓ z) → x) ≤Q z ⊙ (z → x) = x ⋒ z.

Using Proposition 2.2(7) and (2), we have:
x⋒ (y⋓ z) = (y⋓ z) ⊙ ((y⋓ z) → x) = (y ⊙ ((y⋓ z) → x))⋓ (z ⊙ ((y⋓ z) → x))

≤Q (x ⋒ y) ⋓ (x ⋒ z).
On the other hand, x ⋒ y ≤Q y, x ⋒ z ≤Q z imply (x ⋒ y) ⋓ (x ⋒ z) ≤Q y ⋓ z, and
x ⋒ y ≤Q x, x ⋒ z ≤Q x imply (x ⋒ y) ⋓ (x ⋒ z) ≤Q x. Hence by Proposition 2.8,
(x⋒y)⋓ (x⋒z) ≤Q x⋒ (y⋓z). Since Z(X) is a commutative bounded BCK algebra,
the relation ≤Q is antisymmetric, and we conclude that x⋒(y⋓z) = (x⋒y)⋓(x⋒z).
(4) Applying (3), we have:

x ⋓ (y ⋒ z) = (x∗ ⋒ (y ⋒ z)∗)∗ = (x∗ ⋒ (y∗ ⋓ z∗))∗

= ((x∗ ⋒ y∗) ⋓ (x∗ ⋒ z∗))∗ = ((x ⋓ y)∗ ⋓ (x ⋓ z)∗)∗

= (x ⋓ y) ⋒ (x ⋓ z).

Lemma 4.2. The following hold for all x, y ∈ Z(X):
(1) x ⋓ y is the least upper bound (l.u.b.) of {x, y};
(2) x ⋒ y is the greatest lower bound (g.l.b.) of {x, y}.
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Proof. (1) By Corollaries 3.9 and 3.6, Z(X) is closed under ⋒ and ∗. Since x ⋓ y =
(x∗ ⋒ y∗)∗ for all x, y ∈ Z(X), it follows that Z(X) is also closed under ⋓. Since by
commutativity x, y ≤Q x⋓ y, it follows that x⋓ y is an upper bound of {x, y}. Let z
be another upper bound of {x, y}, so that x, y ≤Q z, that is x = x⋒ z and y = y⋒ z.
Using Proposition 4.1(3), we have (x ⋓ y) ⋒ z = z ⋒ (x ⋓ y) = (z ⋒ x) ⋓ (z ⋒ y) =
(x ⋒ z) ⋓ (y ⋒ z) = x ⋓ y. Hence x ⋓ y ≤Q z, so that x ⋓ y is the l.u.b. of {x, y}.
(2) By commutativity we also have x ⋒ y ≤Q x, y, thus x ⋒ y is a lower bound of
{x, y}. Let z be another lower bound of {x, y}, so that z ≤Q x, y, that is z = z ⋒ x
and z = z ⋒ y. Using Proposition 3.7 and Corollary 3.8, we have: z ⋒ (x ⋒ y) =
(x ⋒ y) ⋒ z = y ⋒ (x ⋒ z) = y ⋒ (z ⋒ x) = y ⋒ z = z ⋒ y = z, that is z ≤Q x ⋒ y. It
follows that x ⋒ y is the g.l.b. of {x, y}.

Theorem 4.3. (Z(X),⋒,⋓, 0, 1) is a distributive sublattice of the poset (X, ≤Q

, 0, 1).
Proof. It follows by Lemma 4.2, Theorem 3.18 and Proposition 4.1.

Proposition 4.4. The following hold for all x, y, z ∈ Z(X):
(1) x → (y ⋓ z) = (x → y) ⋓ (x → z) (distributivity of → over ⋓);
(2) x ⊙ (y ⋒ z) = (x ⊙ y) ⋒ (x ⋓ z) (distributivity of ⊙ over ⋒);
(3) (y ⋓ z) → x = (y → x) ⋒ (z → x);
(4) (y ⋒ z) → x = (y → x) ⋓ (z → x).

Proof. (1) Since by commutativity y ⋓ z ≥Q y, z, we have x → (y ⋓ z) ≥Q x →
y, x → z, so that x → (y ⋓ z) is an upper bound of {x → y, x → z}. Let u be
another upper bound of {x → y, x → z}, that is u ≥Q x → y, x → z. It follows
that u ⊙ x ≥Q (x → y) ⊙ x = x ⋒ y and u ⊙ x ≥Q (x → z) ⊙ x = x ⋒ z. Hence, by
Proposition 4.1(3), x ⋒ (y ⋓ z) = (x ⋒ y) ⋓ (x ⋒ z) ≤Q u ⊙ x. Using (QW1), we get
x → (y ⋓ z) = x → (x ⋒ (y ⋓ z)) ≤Q x → (u ⊙ x) = x → (u → x∗)∗ = (u → x∗) →
x∗ = u ⋓ x∗ = u (since u ≥Q x → y ≥Q x∗). Thus x → (y ⋓ z) is the least upper
bound of {x → y, x → z}, and so x → (y ⋓ z) = (x → y) ⋓ (x → z).
(2) Using (1), we have:

x ⊙ (y ⋒ z) = (x → (y ⋒ z)∗)∗ = (x → (y∗ ⋓ z∗))∗

= ((x → y∗) ⋓ (x → z∗))∗ = ((x ⊙ y)∗ ⋓ (x ⊙ z)∗)∗

= (x ⊙ y) ⋒ (x ⊙ z).
(3) Applying Proposition 4.1(1), we have:

(y ⋓ z) → x = x∗ → (y ⋓ z)∗ = x∗ → (y∗ ⋒ z∗)
= (x∗ → y∗) ⋒ (x∗ → z∗) = (y → x) ⋒ (z → x).

(4) By (1), we get:
(y ⋒ z) → x = x∗ → (y ⋒ z)∗ = x∗ → (y∗ ⋓ z∗)

= (x∗ → y∗) ⋓ (x∗ → z∗) = (y → x) ⋓ (z → x).
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Proposition 4.5. The following hold for all x, y, z ∈ Z(X):
(1) (x ⋓ y) → (x ⋓ z) ≥Q x ⋓ (y → z);
(2) (x ⋒ y) → (x ⋒ z) ≥Q x ⋒ (y → z).

Proof. (1) Applying Proposition 4.4, since y → x ≥Q x we get:
(x ⋓ y) → (x ⋓ z) = (x → (x ⋓ z)) ⋒ (y → (x ⋓ z))

= ((x → x) ⋓ (x → z)) ⋒ ((y → x) ⋓ (y → z))
= (1 ⋓ (x → z)) ⋒ ((y → x) ⋓ (y → z))
= 1 ⋒ ((y → x) ⋓ (y → z))
= (y → x) ⋓ (y → z) ≥Q x ⋓ (y → z).

(2) Similarly, using Proposition 4.1 we have:
(x ⋒ y) → (x ⋒ z) = (x → (x ⋒ z)) ⋓ (y → (x ⋒ z))

= ((x → x) ⋒ (x → z)) ⋓ ((y → x) ⋒ (y → z))
= (1 ⋒ (x → z)) ⋓ ((y → x) ⋒ (y → z))
= (x → z) ⋓ ((y → x) ⋒ (y → z))
≥Q (y → x) ⋒ (y → z) ≥Q x ⋒ (y → z).

Proposition 4.6. The following hold for all x, y ∈ Z(X):
(1) (x∗ ⊙ y) ⋒ (x ⊙ y∗) = 0;
(2) (x ⋒ x∗) ⊙ (y ⋒ y∗) = 0;
(3) x ⋒ x∗ ≤Q y ⋓ y∗.

Proof. (1) Applying Proposition 2.6(4), we get:
(x∗ ⊙ y) ⋒ (x ⊙ y∗) = (x∗ → y∗)∗ ⋒ (x → y)∗ = (y → x)∗ ⋒ (x → y)∗

= ((y → x) ⋓ (x → y))∗ = 1∗ = 0.
(2) By distributivity of ⊙ over ⋒ and using (1), we have:

(x ⋒ x∗) ⊙ (y ⋒ y∗) = ((x ⋒ x∗) ⊙ y) ⋒ ((x ⋒ x∗) ⊙ y∗)
= (x ⊙ y) ⋒ (x∗ ⊙ y) ⋒ (x ⊙ y∗) ⋒ (x∗ ⊙ y∗)
= (x ⊙ y) ⋒ 0 ⋒ (x∗ ⊙ y∗) = 0.

(3) Using (2), we get:
(x⋒x∗) → (y ⋓ y∗) = ((x⋒x∗) ⊙ (y ⋓ y∗)∗)∗ = ((x⋒x∗) ⊙ (y ⋒ y∗))∗ = 0∗ = 1.

Since ≤Q and ≤ coincide in Z(X), it follows that x ⋒ x∗ ≤Q y ⋓ y∗.

Definition 4.7. A Kleene algebra is a structure (L, ∧, ∨, ∗, 0, 1), where (L, ∧, ∨, 0, 1)
is a bounded distributive lattice and ∗ is a unary operation satisfying the following
conditions for all x, y ∈ L:
(K1) (x∗)∗ = x;
(K2) (x ∨ y)∗ = x∗ ∧ y∗;
(K3) x ∧ x∗ ≤ y ∨ y∗.

Theorem 4.8. (Z(X),⋒,⋓, ∗, 0, 1) is a Kleene algebra.
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Proof. It follows from Theorem 4.3 and Proposition 4.6(3).

5 The OML-center of quantum-Wajsberg algebras

Given a quantum-Wajsberg algebra X, we define the OML-center O(X) of X, we
study its properties, and show that O(X) is a subalgebra of X. We prove that
O(X) is an orthomodular lattice, and the orthomodular lattices form a subvariety
of the variety of quantum-Wajsberg algebras. In what follows, (X, →,∗ , 1) will be a
quantum-Wajsberg algebra, unless otherwise stated.
Denote O(X) = {x ∈ X | x = x∗ → x}. Obviously 0, 1 ∈ O(X).

Lemma 5.1. O(X) is closed under ∗ and →.

Proof. If x ∈ O(X), then x = x∗ → x, and by Proposition 2.7(8), we get x∗ = x →
x∗ = (x∗)∗ → x∗, hence x∗ ∈ O(X). Let x, y ∈ O(X), that is x = x∗ → x and
y = y∗ → y. By Lemma 2.1(9), we have (x∗ → y)∗ → (x∗ → y) = (x∗ → x)∗ →
(y∗ → y) = x∗ → y, thus x∗ → y ∈ O(X). Finally, from x∗, y ∈ O(X), we get
x → y ∈ O(X). Hence O(X) is closed under ∗ and →.

Corollary 5.2. The following hold:
(1) O(X) = {x ∈ X | x∗ = x → x∗};
(2) (O(X), →, 0, 1) is a subalgebra of (X, →, 0, 1);
(3) O(X) is closed under ⋒, ⋓ and ⊙.

Proposition 5.3. O(X) = {x ∈ X | x∗ ⋓ x = 1} = {x ∈ X | x∗ ⋒ x = 0}.

Proof. If x ∈ O(X), then x = x∗ → x, so that x∗ ⋓ x = (x∗ → x) → x = x → x = 1.
Conversely, if x∗ ⋓ x = 1, then (x∗ → x) → x = 1, that is x∗ → x ≤ x. Since by
Proposition 2.6(2), x ≤Q x∗ → x, using Proposition 2.7(4) we get x = x∗ → x, that
is x ∈ O(X). Similarly O(X) = {x ∈ X | x∗ ⋒ x = 0}.

Proposition 5.4. The following hold for all x ∈ O(X) and y ∈ X:
(1) x → (x → y) = x → y;
(2) (x → y) → x = x;
(3) (y → x)∗ → x = y → x;
(4) (y → x)∗ → (y → x) = y → (y → x).
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Proof. (1) Using Lemma 2.1(7), we get: x → (x → y) = (x → y)∗ → x∗ = x →
(y∗ → x∗) = y∗ → (x → x∗) = y∗ → x∗ = x → y.
(2) It follows by (1), applying Proposition 2.7(8).
(3) By Lemma 2.1(7), (y → x)∗ → x = y → (x∗ → x) = y → x.
(4) Replacing y by y∗ in Lemma 2.1(9) and taking into consideration that x∗ → x =
x, we get (x∗ → y∗)∗ → (x∗ → y∗) = x∗ → (y → y∗), so that (y → x)∗ → (y → x) =
y → (x∗ → y∗). Hence (y → x)∗ → (y → x) = y → (y → x).

For any x, y ∈ O(X), define the operations: x⋓L y = x∗ → y, x⋒L y = x⊙y and
the relation x ≤L y iff x∗ → y = y. One can easily check that x ⋓L y = (x∗ ⋒L y∗)∗

and x ⋒L y = (x∗ ⋓L y∗)∗.

Proposition 5.5. The following hold for all x, y ∈ O(X):
(1) ≤L= ≤Q|O(X);
(2) x ⋓ y ≤Q x ⋓L y and x ⋒L y ≤Q x ⋒ y;
(3) (x ⋓L y) → x∗ = x∗ and (x ⋒L y)∗ → x = x;
(4) (x ⋓L y)∗ → y = x ⋓L y and (x ⋒L y) → y∗ = (x ⋒L y)∗;
(5) (O(X),⋒L,⋓L, 0, 1) is a bounded lattice.

Proof. (1) Let x, y ∈ O(X) such that x ≤Q y. It follows that y∗ ≤Q x∗ and
x∗ → y ≤Q y∗ → y = y. On the other hand, y ≤Q x∗ → y, hence x∗ → y = y, that
is x ≤L y. Conversely, if x ≤L y we have x ≤Q x∗ → y = y. Thus ≤L= ≤Q|O(X).
(2) Since x∗ ≤Q x → y, we have (x → y) → y ≤Q x∗ → y, that is x ⋓ y ≤Q x ⋓L y.
Similarly x ≤Q x∗ → y∗ implies (x∗ → y∗) → y∗ ≤Q x → y∗. Hence (x → y∗)∗ ≤Q

x ⋒ y, so that x ⊙ y ≤Q x ⋒ y, that is x ⋒L y ≤Q x ⋒ y.
(3) It follows from Proposition 5.4(2), replacing x by x∗ and y by y∗, respectively.
(4) Since y ∈ O(X), by Proposition 5.4(3) we have (x → y)∗ → y = x → y. Re-
placing x by x∗ we get (x ⋓L y)∗ → y = x ⋓L y, and replacing y by y∗ we have
(x ⋒L y) → y∗ = (x ⋒L y)∗.
(5) Clearly ⋓L and ⋒L are commutative and idempotent. Moreover, using Lemma
2.1(7) we can easily check that ⋓L and ⋒L are associative. Finally, applying Propo-
sition 5.4(2), we have:

x ⋓L (x ⋒L y) = x∗ → (x → y∗)∗ = (x → y∗) → x = x,
x ⋒L (x ⋓L y) = (x → (x∗ → y)∗)∗ = ((x∗ → y) → x∗)∗ = (x∗)∗ = x,

for all x, y ∈ O(X), hence ⋓L and ⋒L satisfy the absorption laws.
Thus (O(X),⋒L,⋓L, 0, 1) is a bounded lattice.

Corollary 5.6. The following hold for all x, y ∈ O(X):
(1) x ≤Q y iff y = y ⋓L x;
(2) x ⋓ y = (x → y)∗ ⋓L y.

694



Centers of Quantum-Wajsberg Algebras

Proof. (1) x ≤Q y iff x ≤L y iff y = x∗ → y = y∗ → x = y ⋓L x.
(2) x ⋓ y = (x → y) → y = ((x → y)∗)∗ → y = (x → y)∗ ⋓L y.

In what follows, if x, y ∈ O(X), we will use x ≤Q y instead of x ≤L y.

Proposition 5.7. For any x, y ∈ O(X), x ⋓L y and x ⋒L y are the l.u.b. and g.l.b.
of {x, y}, respectively.

Proof. Obviously x, y ≤Q x∗ → y, so that x ⋓L y is an upper bound of {x, y}. Let
z ∈ O(X) be another upper bound of {x, y} in O(X), that is x, y ≤Q z. It follows
that z∗ ≤Q x∗, so that x∗ → y ≤Q x∗ → z ≤Q z∗ → z = z. Hence x⋓L y ≤Q z, that
is x⋓Ly is the l.u.b. of {x, y}. Similarly x⊙y ≤Q x, y, thus x⋒Ly is a lower bound of
{x, y}. Let z ∈ O(X) be another lower bound of {x, y} in O(X), so that z ≤Q x, y.
We get x∗, y∗ ≤Q z∗, so that z∗ is an upper bound of {x∗, y∗}, hence x∗⋓L y∗ ≤Q z∗,
that is x → y∗ ≤Q z∗. It follows that z ≤Q (x → y∗)∗ = x ⊙ y = x ⋒L y, thus x ⋒L y
is the g.l.b. of {x, y}.

Definition 5.8. ([2]) An algebra (X, ∧, ∨,
′
, 0, 1) with two binary, one unary and

two nullary operations is an ortholattice if it satisfies the following axioms for all
x, y, z ∈ X:
(Q1) (X, ∧, ∨, 0, 1) is a bounded lattice;
(Q2) x ∧ x

′ = 0 and x ∨ x
′ = 1;

(Q3) (x ∧ y)′ = x
′ ∨ y

′ and (x ∨ y)′ = x
′ ∧ y

′ ;
(Q4) (x′)′ = x.
An orthomodular lattice is an ortholattice satisfying the following axiom:
(Q5) x ≤ y implies x ∨ (x′ ∧ y) = y (where x ≤ y iff x = x ∧ y).

Theorem 5.9. (O(X),⋒L,⋓L, ∗, 0, 1) is an orthomodular lattice called the ortho-
modular center or OML-center of X.

Proof. Let X be a quantum-Wajsberg algebra. Using Propositions 5.5, 5.7, 5.3
we can easily check that (O(X),⋒L,⋓L, ∗, 0, 1) is an ortholattice. We show that
axiom (Q5) is also satisfied. Let x, y ∈ O(X) such that x ≤Q y, and we have:
x ⋓L (x∗ ⋒L y) = x ⋓L (x∗ ⊙ y) = x ⋓L (x∗ → y∗)∗ = x ⋓L (y → x)∗ = x∗ → (y →
x)∗ = (y → x) → x = y ⋓ x = y, since x ≤Q y.

Theorem 5.10. If (X, ∧, ∨,
′
, 0, 1) is an orthomodular lattice, then (X, →, 0, 1) is a

quantum-Wajsberg algebra, where x → y = x
′ ∨ y for all x, y ∈ X.

Proof. According to [5, Thm. 2.3.9], every orthomodular lattice (X, ∧, ∨,
′
, 0, 1)

determines a QMV algebra by taking ⊕ as the supremum ∨ and ∗ as the ortho-
complement ′ , and conversely, if an ortholattice X determines a QMV algebra
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(X, ⊕,∗ , 0, 1) taking ⊕ = ∨ and ∗ = ′ , then X is orthomodular. By [4, Thm. 5.3],
any quantum-MV algebra (X, ⊕,∗ , 0, 1) is a quantum-Wajsberg algebra (X, →, 0, 1),
where x → y = x∗ ⊕ y. It follows that every orthomodular lattice (X, ∧, ∨,

′
, 0, 1)

determines a quantum-Wajsberg algebra (X, →, 0, 1) with x → y = x∗ ⊕ y = x∗ ∨ y
for all x, y ∈ X.

Corollary 5.11. (X,⋒L,⋓L, ∗, 0, 1) is an orthomodular lattice if and only if O(X) =
X.

Similarly as [5, Cor. 2.3.13] for the case of QMV algebras, we have the following
result.

Corollary 5.12. The orthomodular lattices form a subvariety of the variety of
quantum-Wajsberg algebras. This subvariety satisfies the condition x = x∗ → x,
or equivalently, x∗ ⋓ x = 1, or equivalently, x∗ ⋒ x = 0.

Proof. The equivalence of conditions x = x∗ → x, x∗ ⋓ x = 1 and x∗ ⋒ x = 0 follows
from Proposition 5.3. If a quantum-Wajsberg algebra (X, →, 0, 1) is an orthomodular
lattice with x ∨ y = x∗ → y, than x∗ → x = x ∨ x = x. Conversely, if X satisfies
condition x∗ → x = x for any x ∈ X, then O(X) = X, hence X is an orthomodular
lattice.

Example 5.13. Let X = {0, a, b, c, d, 1} and let (X, →, 0, 1) be the involutive BE
algebra with → and the corresponding operation ⋒ given in the following tables:

→ 0 a b c d 1
0 1 1 1 1 1 1
a c 1 1 c 1 1
b d 1 1 1 d 1
c a a 1 1 1 1
d b 1 b 1 1 1
1 0 a b c d 1

⋒ 0 a b c d 1
0 0 0 0 0 0 0
a 0 a b 0 d a
b 0 a b c 0 b
c 0 0 b c d c
d 0 a 0 c d d
1 0 a b c d 1

.

Then X is a quantum-Wajsberg algebra and Z(X) = {0, 1}, O(X) = X. Therefore
(X,⋒L,⋓L, ∗, 0, 1) is an orthomodular lattice with ⋓L and ⋒L given below.

⋓L 0 a b c d 1
0 0 a b c d 1
a a a 1 1 1 1
b b 1 b 1 1 1
c c 1 1 c 1 1
d d 1 1 1 d 1
1 1 1 1 1 1 1

⋒L 0 a b c d 1
0 0 0 0 0 0 0
a 0 a 0 0 0 a
b 0 0 b 0 0 b
c 0 0 0 c 0 c
d 0 0 0 0 d d
1 0 a b c d 1

.

696



Centers of Quantum-Wajsberg Algebras

As we can see in this example, in general, ⋓L ̸= ⋓ and ⋒L ̸= ⋒.

Remark 5.14. In general, the lattice (O(X),⋒L,⋓L, 0, 1) is not distributive. Indeed,
in Example 5.13 we have a ⋓L (b ⋒L c) = a ̸= 1 = (a ⋓L b) ⋒L (a ⋓L c).

6 Concluding remarks and future work
In this paper, we continued the study of quantum-Wajsberg algebras ([4]). We
defined the Wajsberg-center and the OML-center of a quantum-Wajsberg algebra
(X, →,∗ , 1), proving that the Wajsberg-center is a Wajsberg subalgebra of X, and
that it is a distributive sublattice of the poset (X, ≤Q, 0, 1) (where 0 = 1∗). We
introduced the notion of quasi-linear quantum-Wajsberg algebras, and we proved
that the Wajsberg-center of a quasi-linear quantum-Wajsberg algebra is a linearly
ordered Wajsberg algebra. We also proved that the OML-center is an orthomodu-
lar lattice, and that the orthomodular lattices form a subvariety of the variety of
quantum-Wajsberg algebras.
There are several ways this work can be continued, as follows:

− Introduce and study certain generalizations of quantum-Wajsberg algebras,
such as implicative-orthomodular, pre-Wajsberg and meta-Wajsberg algebras.

− Define the implicative-orthomodular lattices as a special subclass of quantum-
Wajsberg algebras, and study their properties.

− Prove an analogue of Foulis-Holland theorem for implicative-orthomodular
lattices.

− Study the Baer ∗-semigroup associated to an implicative-orthomodular lattice
X and its relationship with the Sasaki projections defined on X.

− Investigate the central lifting property for implicative-orthomodular lattices.
Another direction of research could be the solving of the following open problem.
Open problem. Is the variety of quasi-linear quantum-Wajsberg algebras axiom-
atizable (in the sense of [9])?
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Abstract
We investigate a notion of inverse for neutrices inspired by Van den Berg

and Koudjeti’s decomposition of a neutrix as the product of a real number and
an idempotent neutrix. We end up with an algebraic structure that can be
characterized axiomatically and generalizes involutive meadows. The latter are
algebraic structures where the inverse for multiplication is a total operation. As
it turns out, the structures satisfying the axioms of flexible involutive meadows
are of interest beyond nonstandard analysis.

1 Introduction
Neutrices and external numbers (which can be seen as translations of neutrices over
the hyperreal line) were introduced by Van den Berg and Koudjeti in [25] as models
of uncertainties, in the context of nonstandard analysis, and further developed in
[24, 27, 16, 19, 20]. Neutrices were named after and inspired by Van der Corput’s
groups of functions [28] in an attempt to give a mathematically rigorous formulation
to the art of neglecting small quantities – ars negligendi.

One of the long-standing open questions in the theory of external numbers is the
definition of a suitable notion of inverse of a neutrix. For zeroless external numbers,
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that is, external numbers that don’t contain 0 and therefore cannot be reduced to a
neutrix, there is a sort of inverse, defined from the Minkowski product between sets
(see Definition 3.4 below), but this cannot work as a proper inverse since in many
instances the result turns out to be the empty set.

A meadow (see Sections 2.1 and 2.2 below for further details) is a sort of commu-
tative ring with a multiplicative identity element and a total multiplicative inverse
operation. The theory of meadows allows for two main options: (i) involutive mead-
ows which define 0−1 = 0, resulting into an equational theory closer to that of the
original structure [6], (ii) common meadows which define 0−1 as a new error term
that propagates through calculations [5] (see also [7, 15, 8, 9]). For some recent
developments, see [8, 9, 12, 13, 14].

One of the motivations for the study of structures where the inverse of zero is
defined comes from equational theories [23, 26, 6]. For instance, Ono and Komori
introduced such structures motivated from the algebraic study of equational theories
and universal theories of fields, and free algebras over all fields, respectively. A
long-standing result by Birkhoff states that algebraic structures with an equational
axiomatization – namely, whose axioms only involve equality, besides the functions
and constants of the structure itself – are closed under substructures. Algebraic
structures where the inverse is defined only for nonzero elements are not equational,
since they have to use inequalities or quantifiers in their definition of a multiplicative
inverse. Instead, involutive meadows and common meadows which, as mentioned
above, define the inverse of zero as zero or a new error term, respectively, admit
equational axiomatizations.

Equational axiomatizations of meadows based on known algebraic structures,
such as Q and R, are also of interest to computer science. According to Bergstra
and Tucker [6], such equational axiomatizations allow for simple term rewriting
systems and are easier to automate in formal reasoning.

Another motivation for the study of meadows is a philosophical interest in the
definition of an inverse of zero (see e.g. [4, Section 3]), if one wants to assign a
meaning to expressions such as 0−1 or 1/0 (Bergstra and Middleburg argue that, in
principle, these two operations need to be distinguished [4]).

It turns out that external numbers are particularly suitable for expressing the
kind of concepts involved in the definition of the inverse of zero. The key insight
is that, being convex subgroups of the hyperreal numbers (i.e. the extension of the
real number system which includes nonstandard elements such as infinitesimals),
neutrices are “error” terms in the following sense:

• the sum of a neutrix with itself or with one of its elements is still the same
neutrix;
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• the product of a neutrix by an appreciable (not infinitesimal and not infinitely
large) number is still the same neutrix;

• the product of a neutrix by an external number is a neutrix.

These properties are similar to those of 0, that is neutrices are idempotent for addi-
tion and absorbent for multiplication. Therefore neutrices can be seen as generalized
zeroes and are suitable to build models of meadows.

The fact that one is using hyperreals (or other non-archimedean field extensions
of the real numbers) is crucial, because the real numbers only have two convex
subgroups: {0} and R, while in the context of the hyperreals there are countably
infinitely many, e.g. the set of all infinitesimals – denoted ⊘ – and the set of all limited
numbers – denoted £ (see the examples after Definition 3.1). In turn, external
numbers are of the form a+A, where a is an hyperreal number and A is a neutrix and
can therefore be seen as translations of neutrices. According to the interpretation of
neutrices as error terms or generalized zeroes, external numbers can be interpreted
as expressing a quantity with a degree of uncertainty.

By introducing an alternative way to define the inverse of a neutrix, inspired
by a result of Van den Berg and Koudjeti [25] stating that every neutrix can be
decomposed as the product of an hyperreal number and an idempotent neutrix,
we end up with an algebraic structure that can be characterized axiomatically and
generalizes involutive meadows. Since the new class of structures involves error
terms, we call it the class of flexible involutive meadow, in the spirit of [22].

In summary, the contributions of the paper are the following.

• We answer a question about the inverse of a neutrix.

• We connect the inverse of a neutrix to meadows, specifically involutive mead-
ows.

• Inspired by the properties of the inverse of a neutrix, we propose a new al-
gebraic structure that generalises involutive meadows in a simple way, called
flexible involutive meadows, and we provide an axiomatization of such struc-
tures.

• We give some models of flexible involutive meadows.

We start in Section 2 by recalling the axioms of common meadows and of involu-
tive meadows. We also recall some notions and results concerning external numbers
in Section 3. In Section 4 we introduce flexible involutive meadows and prove that
the external numbers are a flexible involutive meadow. We also derive some proper-
ties of flexible involutive meadows and relate them with varieties and von Neumann
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regular rings. Then, in Section 5, we present additional models for meadows relying
on the external numbers. Some final remarks and open questions are mentioned in
Section 6.

2 Preliminary notions
In this section we recall the axioms of common meadows and involutive meadows.
We also provide some motivation for the study of structures where division by zero
is possible.

2.1 Involutive meadows
The axioms of involutive meadows are listed in Figure 1 (see also [2, 4]).

(I1) (x + y) + z = x + (y + z)
(I2) x + y = y + x

(I3) x + 0 = x

(I4) x + (−x) = 0
(I5) (x · y) · z = x · (y · z)
(I6) x · y = y · x

(I7) 1 · x = x

(I8) x · (y + z) = x · y + x · z

(I9) (x−1)−1 = x

(I10) x · (x · x−1) = x

Figure 1: Axioms for involutive meadows

The term involutive refers to the fact that taking inverses is an involution, as
postulated by axiom (I9). With the exception of axiom (I10), the remaining axioms
are quite standard, as they postulate the existence of operations of addition +
and multiplication · which are associative, commutative, admit a neutral element
(denoted 0 and 1 respectively). Furthermore, there is an inverse for addition, and
multiplication is distributive with respect to addition. Axioms (I9) and (I10) entail
that 0−1 = 0 (see [6, Theorem 2.2]). Axiom (I10) replaces the more usual x ·x−1 = 1,
which is false for x = 0 (otherwise, 0 = 0 · 0 = 0 · 0−1 = 1). This hints at the fact
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that, in general, one should not define x−1 as the element satisfying x ·x−1 = 1. This
also ties in with rejecting division as the “inverse” of multiplication, as discussed in
[4].

2.2 Common meadows
The axioms of common meadows are listed in Figure 2 (see also [5]).

(M1) (x + y) + z = x + (y + z)
(M2) x + y = y + x

(M3) x + 0 = x

(M4) x + (−x) = 0 · x

(M5) (x · y) · z = x · (y · z)
(M6) x · y = y · x

(M7) 1 · x = x

(M8) x · (y + z) = x · y + x · z

(M9) −(−x) = x

(M10) x · x−1 = 1 + 0 · x−1

(M11) (x · y)−1 = x−1 · y−1

(M12) (1 + 0 · x)−1 = 1 + 0 · x

(M13) 0−1 = a
(M14) x + a = a

Figure 2: Axioms for common meadows

As with involutive meadows, some of the axioms are quite standard (namely
(M1) − (M3), (M5) − (M7), (M8), (M9), and (M11)), as they postulate the existence
of operations of addition + and multiplication · which are associative, commutative
and admit a neutral element (denoted 0 and 1 respectively). Note that, in involutive
meadows, the equations of axioms (M9) and (M11) can be derived from the other
axioms (as discussed in [6]). Furthermore, there is an inverse for addition, multipli-
cation is distributive with respect to addition, and the inverse of the product of two
elements is the product of the inverses.

Axiom (M4) postulates the existence of a sort of additive inverse for every element
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x but with the caveat that the result of operating an element with its inverse is not
the neutral element 0 but 0 · x.

Axioms (M10) and (M12) concern further properties of the inverse for multipli-
cation. The novelty, compared with more familiar settings, is that they have “error”
terms in the form of the product of an element x, (respectively, its inverse x−1) by 0.

Axiom (M13) defines 0−1 as an “error” term a (some authors denote this error
term by ⊥) that does not belong to the initial structure. Due to the presence of this
error term, the result of x · x−1 is defined as 1 + 0 · x−1. If x ̸= 0 and x ̸= a, then
0 · x−1 = 0 (see [5, Proposition 2.3.1]) and we recover the usual result that holds in
a field. If x = 0 or x = a, then the additional term 0 · x−1 is equal to a.

Axiom (M12) has a similar motivation: if x ̸= a, then we recover that the inverse
of 1 is 1. If x = a, then we get that the inverse of a is a itself.

3 Hyperreal numbers and external numbers
Let us recall some definitions and results about neutrices and external numbers. We
will use ∗R to denote an elementary equivalent extension of the real number system
that includes nonstandard elements – such as infinitesimals – [21], and R to denote
the usual set of real numbers.1

A number x is infinitesimal if |x| < r for every positive r ∈ R and it is infinite if
|x| > r for every r ∈ R. We use the notation x ≃ 0 to say that x is infinitesimal. We
will also write x ≃ y, and say that x is infinitely close to y, if x − y ≃ 0. A number
is said to be finite if it is not infinite, and appreciable if it is neither infinitesimal nor
infinite.

Crucially, the hyperreals admit nontrivial convex subgroups for addition (for
instance: the set of infinitesimals ⊘, the set of finite numbers £).

This property is shared by other non-archimedean field extensions of R. We will
discuss this matter further in Section 4.4.

3.1 External numbers
Definition 3.1 (Neutrices). A neutrix is a convex subset of ∗R that is a subgroup
for addition.

Some simple examples of neutrices are:

• ⊘ = {x ∈ ∗R : x ≃ 0};

1Note that this notation differs from the usual presentations of external numbers, according to
which R already contains nonstandard elements.
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• £ = {x ∈ ∗R : x is finite};

• if ε ≃ 0, ε£ =
{
x ∈ ∗R : x

ε is finite
}
.

Definition 3.2 (External numbers). An external number α is the sum of an hyper-
real number a and a neutrix A in the following sense:

α = a + A = {a + r : r ∈ A}.

An external number α = a + A that is not reduced to a neutrix (equivalently,
such that 0 ̸∈ α) is said to be zeroless.

The sum and product of external numbers is introduced in the following defini-
tion. We refer to [25, 16, 20] for their properties.

Definition 3.3. For a, b ∈ ∗R and A, B ⊆ ∗R (not necessarily neutrices), we define
the Minkowski sum and product

(a + A) + (b + B) = (a + b) + (A + B)
(a + A) · (b + B) = ab + aB + bA + AB,

where

A + B = {x + y : x ∈ A ∧ y ∈ B}
aB = {ay : y ∈ B}
AB = {xy : x ∈ A ∧ y ∈ B}.

It is also possible to define a notion of division between subsets of hyperreal
numbers, even if they contain 0.

Definition 3.4. For A, B ⊆ ∗R (not necessarily neutrices), we define

A · B−1 = {x : xB ⊆ A}.

Usually, for neutrices, A · B−1 is written as A
B . Here we chose the inverse no-

tation since we are investigating structures related to meadows, whose axioms are
commonly stated in terms of the inverse operation. For further discussion on the
use of these operations we refer to [4].

Notice that Definition 3.4 doesn’t allow us to obtain a proper inverse of a neutrix.
In fact, if A = {1} and B is a neutrix, A · B−1 is empty, since for no x we have
0 · x ∈ A. This example motivated us to look for alternative definitions of inverses
of a neutrix.
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Let us finish this section by recalling some results on external numbers which
will be useful later on.

If x = a + A is zeroless, then a−1 · A ⊆ A, and therefore a−1 · A + A = A. In
fact, a−1 · A ⊆ ⊘.

The Taylor formula for (a + A)−1 allows to obtain the following expression for
the inverse of zeroless external numbers.

Proposition 3.5 ([25, p. 151],[20, Theorem 1.4.2]). Let x = a + A be a zeroless
external number. Then

x−1 = (a + A)−1 = a−1 + a−2 · A.

We conclude with a list of basic algebraic properties of external numbers. Proper-
ties (3) and (4) are a consequence of the fact that, for a neutrix A, A+A = A−A = A.
Property (7) replaces the usual distributivity formula, taking into account how er-
ror terms propagate (for further details on the distributivity formula for external
numbers, see [16, Section 5]).

Proposition 3.6. Let x, y, z be external numbers such that x = a + A. Then

1. x + (y + z) = (x + y) + z;

2. x + y = y + x;

3. x + A = x;

4. x + (−x) = A;

5. (x · y) · z = x · (y · z);

6. x · y = y · x;

7. x · y + x · z = x · (y + z) + A · y + A · z;

8. (x−1)−1 = x.

4 Flexible involutive meadows
A neutrix I is said to be idempotent if I · I = I. As showed by Van den Berg and
Koudjeti in [25] (see also [17]) every neutrix is a multiple of an idempotent neutrix.

Theorem 4.1 ([25, Theorem 7.4.2]). Let N be a neutrix. Then, there exists an
hyperreal number r and a unique idempotent neutrix I such that N = r · I.
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We use the previous result to define inverses for neutrices.

Definition 4.2. Let x = a + A, where A = r · I, for some hyperreal number r and
idempotent neutrix I. We define the inverse of x, denoted x−1, as follows:

x−1 =
{

a−1 + a−2 · A if a ̸= 0
r−1 · I otherwise.

The idempotent neutrices I can be seen as a generalized zeroes, since they share
with 0 the properties I + I = I and I · I = I. Also, I−1 = I, similarly to 0−1 = 0 in
involutive meadows.

In the decomposition N = r · I of Theorem 4.1, the idempotent neutrix I is
uniquely determined, but the number r is not. Nevertheless, the inverse given in
Definition 4.2 is uniquely defined, as a consequence of the next proposition.

Proposition 4.3. If r, s ∈ ∗R and r ̸= s satisfy N = r · I = s · I, then also
r−1 · I = s−1 · I.

Proof. We may assume, without loss of generality that 0 < r < s, which implies
that s−1 < r−1. Suppose towards a contradiction that r−1 · I ̸= s−1 · I. By our
assumptions over r and s, this implies s−1 · I ⊊ r−1 · I. Then, there exists some
i ∈ I such that i · r−1 ̸∈ s−1 · I. If we multiply by r, we obtain

i ̸∈ s−1 · (r · I) = s−1 · (s · I) = I,

which contradicts the assumption that i ∈ I. Hence r−1 · I = s−1 · I.

We show that the external numbers equipped with the inverse defined in Def-
inition 4.2 satisfy the axioms given in Figure 3, where N(x) denotes the neutrix
part of the external number x. As such, one can also think of N(x) as an error
term, or a generalized zero, such that every x decomposes uniquely as x = r + N(x)
with N(r) = 0. We call any structure satisfying the axioms in Figure 3 a flexible
involutive meadow.
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(FI1) (x + y) + z = x + (y + z)
(FI2) x + y = y + x

(FI3) x + N(x) = x

(FI4) x + (−x) = N(x)
(FI5) (x · y) · z = x · (y · z)
(FI6) x · y = y · x

(FI7)
(
1 + N(x) · x−1) · x = x

(FI8) x · y + x · z = x · (y + z) + N(x) · y + N(x) · z

(FI9) (x−1)−1 = x

(FI10) x · (x · x−1) = x

Figure 3: Axioms for flexible involutive meadows

The axioms of flexible involutive meadows generalize the axioms of involutive
meadows given in Figure 1 by replacing 0 with generalized zeroes N(x), 1 with
generalized ones (i.e. 1 plus an error term of the form N(x)), and distributivity by
a generalized form of distributivity which holds for the external numbers. Notice
that, in the context of the external numbers, the generalized zeroes take the form
of neutrices.

Axiom (FI7) is the flexible counterpart to (I7), but replaces 1 with 1+N(x) ·x−1,
and not simply with 1 + N(x). In the setting of external numbers, this is necessary
because if N(x) ⊇ £, then 1 + N(x) = N(x) would be a generalized zero. Axiom
(FI8) is a generalized distributivity axiom. In the setting of external numbers, the
term N(x) · y + N(x) · z is a neutrix, so the error term in (FI8) is once again a
neutrix. In fact, if one interprets N(x) as being 0 for all x, then one recovers the
axioms for involutive meadows. The proof is straightforward.

Lemma 4.4. Let M be an involutive meadow. Then, if one defines N(x) = 0 for
all x ∈ M , the resulting structure is a flexible involutive meadow.

In order to prove that the external numbers satisfy the axioms for flexible invo-
lutive meadows, we will use the following properties of the inverse of a neutrix.

Lemma 4.5. Let x = N(x) = r ·I, with r ∈ ∗R and I an idempotent neutrix. Then:

1. (1 + x · x−1) · x = x;
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2. (x−1)−1 = x;

3. x · (x · x−1) = x.

Proof. 1. We have that x · x−1 = N(x) · x−1 = I. Hence

(1 + x · x−1) · x = (1 + I) · (r · I) = r · I + r · I2 = r · I = x.

2. We have
(x−1)−1 = (r−1I)−1 = (r−1)−1I = rI = x.

3. We have

x · (x · x−1) = rI · (rI · r−1I) = rI · I = rI = x.

As proved below, the external numbers satisfy an additional property related to
the following Inverse Law of involutive meadows:

x ̸= 0 ⇒ x · x−1 = 1

Involutive meadows that satisfy the Inverse Law are called cancellation meadows and
are of particular interest. In fact, in [1] it is proved that every involutive meadow is
a subdirect product of cancellation meadows.

In the setting of flexible involutive meadows, the inverse law is more suitably
expressed by its flexible counterpart:

x ̸= N(x) ⇒ x · x−1 = 1 + e, (4.1)

where e is a generalized zero (in the sense that e + e = e) such that 1 + e is not a
generalized zero.

Moreover, by part 3 and part 4 of Proposition 3.6, the external numbers satisfy
the following properties that generalize the properties of arithmetical meadows [4]:

(A1) x + (−x) = N(x)
(A2) x + N(x) = x.

Notice that (A2) is axiom (FI3) of flexible involutive meadows.

Theorem 4.6. The external numbers with the usual addition and multiplication and
with the inverse introduced in Definition 4.2 satisfy the axioms for flexible involutive
meadows plus the Flexible Inverse Law given by (4.1) and the properties (A1) and
(A2).
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Proof. By Proposition 3.6, in order to show that the external numbers are a flexible
involutive meadow we only need to verify (FI7) and (FI10). If x is a neutrix, both
axioms hold due to Lemma 4.5. Assume that x = a + A is zeroless. Then, using the
algebraic properties of the external numbers one derives

(1 + N(x) · x−1) · x =
(
1 + A

(
a−1 + a−2 · A

))
(a + A)

=
(
1 +

(
a−1 · A + a−2 · A2

))
(a + A)

= a + A + a−1 · A2 + A + a−1 · A3

= a + A = x.

Hence (FI7) holds. As regarding (FI10) one has

x(x · x−1) = (a + A)
(
1 + a−1 · A

)
= a + A + A + a−1 · A2 = a + A = x.

Hence (FI10) also holds and therefore the external numbers are a flexible involutive
meadow.

We now show the Flexible Inverse Law. Let x = a + A be a zeroless external
number. Then

x · x−1 = 1 + a−1 · A + a−1 · A + a−2 · A2 = 1 + a−1 · A.

Since x is zeroless, a−1 · A ⊆ ⊘, so the Flexible Inverse Law is satisfied.

Corollary 4.7. The axioms for flexible involutive meadows are consistent.

4.1 Some properties of flexible involutive meadows
We now prove some basic properties of flexible involutive meadows. We start by
showing an additive cancellation law and that N(·) is idempotent for addition.

Proposition 4.8. Let M be a flexible involutive meadow and let x, y, z ∈ M . Then

1. x + y = x + z if and only if N(x) + y = N(x) + z;

2. N(x) + N(x) = N(x).

Proof. 1. Suppose firstly that x + y = x + z. Then

N(x) + y = −x + x + y = −x + x + z = N(x) + z.

Suppose secondly that N(x) + y = N(x) + z. Then

x + y = x + N(x) + y = x + N(x) + z = x + z.
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2. This follows from applying part (1) to axiom (FI3).

In order to prove other basic properties that allow one to operate with the N(·)
function and with additive inverses one needs to assume the following two extra
axioms

(N1) N(x + y) = N(x) ∨ N(x + y) = N(y);
(N2) N(−x) = N(x).

Proposition 4.9. Let M be a flexible involutive meadow satisfying also (N1) and
(N2), and let x, y, z ∈ M . Then

1. N(x + y) = N(x) + N(y);

2. N(N(x)) = N(x);

3. If x = N (y), then x = N (x);

4. −(−x) = x;

5. −(x + y) = −x − y;

6. N(x) = −N(x).

Proof. 1. One has

x + y + N(x) + N(y) = x + N(x) + y + N(y) = x + y.

Then by part (1) of Proposition 4.8

N(x + y) + N(x) + N(y) = N(x + y). (4.2)

By (N1) one has N(x + y) = N(x) or N(x + y) = N(y). Suppose that
N(x + y) = N(x). Then by (4.2) and Proposition 4.8,

N(x + y) = N(x) + N(x) + N(y) = N(x) + N(y).

If N(x + y) = N(y) the proof is analogous.

2. Using Proposition 4.8 and part 1 we have

N(N(x)) = N(x − x) = N(x) + N(−x) = N(x) + N(x) = N(x).
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3. Using part 2 we derive that N(x) = N(N(y)) = N(y) = x.

4. We have that
N(−(−x)) = N(−x) = N(x) = −x + x.

Hence

−(−x) = −(−x) + N(−(−x)) = −(−x) − x + x = N(−x) + x = N(x) + x = x.

5. By part 1

−(x+y)+x+y = N(x+y) = N(x)+N(y) = −x+x−y +y = −x−y +x+y.

Then by Proposition 4.8

−(x + y) + N(x + y) = −x − y + N(x + y).

Again using part 1 one obtains

−(x+y)+N(−(x+y)) = −x−y+N(−x)+N(−y) = −x+N(−x)−y+N(−y).

Hence −(x + y) = −x − y.

6. By part 4 we have

N(x) = −x + x = −x − (−x) = −(x − x) = −N(x).

4.2 Flexible involutive meadows are varieties
In [1], Bergstra and Bethke studied the relations between involutive meadows and
varieties. One of their results is that involutive meadows are varieties. We prove
that flexible involutive meadows are also varieties.

Let us start by recalling the definition of varieties in this context, following [10].

Definition 4.10. If F is a signature, then an algebra A of type F is defined as
an ordered pair (A, F ), where A is a nonempty set and F is a family of finitary
operations on A in the language of F such that, for each n-ary function symbol f
in F , there is an n-ary operation fA on A.

Definition 4.11. A nonempty class K of algebras of the same signature is called a
variety if it is closed under subalgebras, homomorphic images, and direct products.

A result by Birkhoff entails that K is a variety if and only if it can be axiomatized
by identities.
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Definition 4.12. Let Σ be a set of identities over the signature F ; and define M(Σ)
to be the class of algebras A satisfying Σ. A class K of algebras is an equational
class if there is a set of identities Σ such that K = M(Σ). In this case we say that
K is defined, or axiomatized, by Σ.

Theorem 4.13. K is a variety if and only if it is an equational class.

The class K of flexible involutive meadows is axiomatized by the identities in
Figure 3 over the signature Σ = {+, ·, −, −1, 0, 1, N(·)}, where N is a unary function
that, when interpreted with the external numbers, corresponds to the neutrix part
of a number x. As a consequence of Birkhoff’s theorem, we have the following result.

Corollary 4.14. Flexible involutive meadows are varieties.

4.3 Flexible involutive meadows and commutative von Neumann
regular rings

In the investigation of meadows, the relation with commutative von Neumann reg-
ular rings with a multiplicative identity element seems to be of particular interest
[3, 4].

We recall that a semigroup (S, ·) is said to be Von Neumann regular if

∀x ∈ S ∃y ∈ S (x · x · y = x) .

A commutative von Neumann regular ring with a multiplicative identity is a Von
Neumann regular commutative semigroup for both addition and multiplication.

Flexible involutive meadows are also commutative von Neumann regular rings
with a multiplicative identity element.

Proposition 4.15. Let M be a flexible involutive meadow. Then M is a Von
Neumann regular commutative semigroup for both addition and multiplication.

Proof. This is a simple consequence of associativity together with axioms (FI4) and
(FI10).

In [3, Lemma 2.11] it was shown that commutative von Neumann regular rings
can be expanded in a unique way to an involutive meadow. Since involutive meadows
are also flexible involutive meadows, von Neumann regular rings can be expanded
to flexible involutive meadows. The expansion to flexible involutive meadows might
not be unique, though, due to the presence of different error terms.

Further research on the connection between commutative von Neumann regular
rings and flexible involutive meadows goes beyond the scope of this paper.
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4.4 Solids are flexible involutive meadows
We finish this section by showing that instead of working with the external numbers,
one can use a purely algebraic approach by working with a structure called a solid.
A solid is a generalization of the notion of field in which there are generalized neutral
elements for both addition and multiplication (e and u, respectively), and generalized
inverses (s and d). For a full list of the solid axioms and for the definitions of the
functions e, u, s and d we refer to the appendix in [18] or [19].

The following proposition compiles some results from [19, Propositions 2.12, 4.8
and Theorem 2.16] and [16, Proposition 4.12], which we use to show that solids are
flexible involutive meadows.

Proposition 4.16. Let S be a solid and let x, y, z ∈ S.

1. If x = e(x), then e(xy) = e(x)y;

2. If x ̸= e(x), then u(x)e(x) = xe(u(x)) = e(x);

3. x(z + e(y)) = xz + xe(y);

4. If x ̸= e(x), then d(d(x)) = x.

Theorem 4.17. Every solid is a flexible involutive meadow.

Proof. Let S be a solid. Most of the axioms of flexible involutive meadows are also
axioms of solids, by considering N(x) = e(x), −x = s(x), x−1 = d(x), and 1 = u.
The only non-obvious cases are the cases of axioms (FI7), (FI9) and (FI10).

For axiom (FI7), if x ̸= e(x), using the solid axioms and Proposition 4.16 we
obtain

(1 + N(x) · x−1) · x = x + e(x)d(x)x = x + e(x)u(x) = x + e(x) = x.

If x = e(x), the result follows from Lemma 4.5(1).
Axiom (FI9) follows from Lemma 4.5(2), if x = e(x) and from Proposition

4.16(4).
Finally, axiom (FI10) follows easily from the solid axioms if x ̸= e(x) and from

Lemma 4.5(3) if x = e(x).

As it turns out, and as mentioned above, one is not forced to work in a nonstan-
dard setting. Indeed, any non-archimedean ordered field yields a model of flexible
involutive meadows.

Let F be a non-archimedean ordered field. Let C be the set of all convex sub-
groups for addition of F and Q be the set of all cosets with respect to the elements
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of C. In [18] the elements of C were called magnitudes and Q was called the quotient
class of F with respect to C. In the same paper it was also shown that the quotient
class of a non-archimedean field is a solid. Hence we have following corollary.

Corollary 4.18. The quotient class of a non-archimedean ordered field is a flexible
involutive meadow.

5 Further models for meadows using external numbers
In the introduction we claimed that the external numbers are particularly suitable
for expressing the kind of concepts involved in the definition of the inverse of zero.
In order to support that claim, we explore further models for meadows inspired by
the external numbers. We start by building a model for flexible involutive meadows
over a finite field F and proceed by constructing a model for common meadows over
∗R.

5.1 Finite models of flexible involutive meadows
In this subsection we show that any finite field can be extended to a finite model of
a flexible involutive meadow.

Recall that a finite field is isomorphic to Fpm , with p a prime number and m
a positive integer. As a consequence, without loss of generality we assume that
elements of the finite field, which we will simply denote F from here on, are of the
form a mod pm with a ∈ N, so we can identify elements of F with natural numbers
between 0 and pm − 1.

Definition 5.1. Let (F, +, ·) be a finite field. Without loss of generality, we may
think that the elements of F are natural numbers between 0 and |F| − 1. We define
(F̂, ⊕, ⊙) as follows.

• For every a ∈ F, we define the external number â = a+⊘ and F̂ = {â : a ∈ F}.

• For every nonzero a ∈ F, we set (â)−1 = â−1.

• (0̂)−1 = 0̂ (this definition is motivated by, and indeed coincides with the one
in Definition 4.2).

• The sum ⊕ and product ⊙ over F̂ are defined as:

â ⊕ b̂ = â + b
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and
â ⊙ b̂ = âb

where sums and product on the right hand side are the sums and product in F.

Theorem 5.2. Let F be a finite field. Then F̂ satisfies the axioms for flexible
involutive meadows.

Proof. If x ̸= 0̂, the axioms are satisfied since F is a field and the operations in F̂
are compatible with the ones in F.

If x = 0̂, axioms (I1) − (I8) follow from the fact that F is a field.
As for axiom (I9), if x = 0̂, then 0̂ −1 = 0̂, so that (0̂ −1)−1 = 0̂ −1 = 0̂.
Finally, for axiom (I10), if x = 0̂, then 0̂ · 0̂ −1 = 0.

Remark 5.3. Similar models for involutive meadows can be obtained without recur-
ring to infinitesimals, as one could define the alternative model F̃ by requiring the
existence of an element E /∈ F and defining, for each a ∈ F the element ã = a + E
and the set F̃ := {ã : a ∈ F} with the operations

ã ⊕ b̃ = (a + E) + (b + E) = (a + b) + E,

(note that, in particular E ⊕ E = (0 + E) + (0 + E) = (0 + 0) + E = 0 + E = E),

ã ⊙ b̃ = (a + E) · (b + E) = (a · b) + E

and

ã−1 = a−1 + E

and, finally,

0̃−1 = 0 + E = 0̃.

5.2 A model for common meadows based on R

In this section we introduce a model R̂ for the axioms of common meadows given
in Figure 2. In our model, we consider the elements of R plus an error term in the
form of a neutrix. In order to make things concrete, we choose to use the neutrix ⊘
but, in principle, any neutrix included in ⊘ can be used.

Elements of R will be represented by external numbers of the form r + ⊘ with
r ∈ R, while ∗R will act as an inverse of the neutrix ⊘, which is the representative
of 0. We can interpret ⊘−1 = ∗R as the smallest neutrix collecting all the inverses
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of the elements of ⊘. The fact that the inverse of 0 has, in a sense, the maximum
possible uncertainty is in good accord with both the intuition that division by 0
introduces an error term, and to the common practice of having the inverse of 0 not
being a member of the original field [5].

The inverse of ∗R is again ∗R. This choice can be justified in two ways. We
can again interpret ∗R−1 as the smallest neutrix collecting all the inverses of the
elements of ∗R or, alternatively, since ⊘ ⊂ ∗R, the inverse of ∗R should also be
maximal.

Definition 5.4. We define the set R̂ as follows:

• For every r ∈ R, we set r̂ = r + ⊘ ∈ R̂.

• ∗R ∈ R̂.

• For every nonzero r ∈ R, we set r̂−1, with the quotient introduced in Definition
3.4 (see also Proposition 3.5).

• We define (0̂)−1 = ∗R and ∗R−1 = ∗R (so ∗R acts like the error term a in the
definition of common meadow).

• The sum and product over R̂ are the Minkowski operations introduced in
Definition 3.3.

In the definition of real numbers as limits of Cauchy sequences, real numbers can
be seen as being determined up to “infinitesimals”, which have an interpretation in
terms of sequences converging to 0. In the model of common meadows introduced in
the previous definition, this idea is expressed by the representation of r as r̂ = r+⊘.

An immediate consequence of the previous definition is that for every x ∈ R̂ we
have

x + (0̂)−1 = (0̂)−1 + x = x · (0̂)−1 = (0̂)−1 · x = ∗R. (5.1)

In the next lemma, we establish that the operations in R̂ are compatible with
those in R.

Lemma 5.5. For every r, s ∈ R,

• r̂ + s = r̂ + ŝ;

• r̂ · s = r̂ · ŝ.

Moreover, for every nonzero r ∈ R, r̂−1 = r̂−1.

719



Bottazzi and Dinis

Proof. The first two properties are a consequence of the following equalities

r̂ + s = r + s + ⊘ = (r + ⊘) + (s + ⊘) = r̂ + ŝ.

and, taking into account that r and s are real numbers,

r̂ · s = r · s + ⊘ = (r + ⊘) · (s + ⊘) = r̂ · ŝ.

As for the inverse, if r ̸= 0, r̂−1 = 1
r + ⊘, whereas, by Proposition 3.5,

r̂−1 = (r + ⊘)−1 = r−1 + r−2 · ⊘ = 1
r

+ ⊘.

Corollary 5.6. For every r ∈ R,

1. if r ̸= 0, then r̂ · r̂−1 = 1̂;

2. if r ̸= 0, then 0̂ · r̂−1 = 0̂;

3. 1̂ = 1̂ + 0̂ · r̂;

4. r̂ + ∗R = ∗R + r̂ = ∗R and r̂ · ∗R = ∗R · r̂ = ∗R;

5. ∗R + ∗R = ∗R − ∗R = ∗R · ∗R = ∗R.

Equalities (1)–(3) in Corollary 5.6 can be obtained from the corresponding equal-
ities for real numbers by repeated use of Lemma 5.5.

Theorem 5.7. R̂ is a model of axioms (M1)–(M14) of common meadows.

Proof. We start by showing that axiom (M1) is satisfied. If x, y and z are different
from ∗R, then this is a consequence of Lemma 5.5. If at least one of x, y and z is
equal to ∗R, then both sides of the equality evaluate to ∗R by Corollary 5.6. The
proof follows similar steps for axioms (M2) − (M9). Note that, for axiom (M8), we
use also the fact that we have only one order of magnitude besides ∗R.

Let us show that axiom (M10) is satisfied. If x = 0̂:

0̂ · (0̂)−1 = ∗R = 1̂ + 0̂ · ∗R.

If x = ∗R: as a consequence of the definition of ∗R−1, we have
∗R · ∗R−1 = ∗R = 1̂ + 0̂ · ∗R = 1̂ + 0̂ · ∗R−1.

We now turn to axiom (M11). If x, y are not equal to 0 nor to ∗R, the axiom
holds as a consequence of Lemma 5.5. Otherwise, due to the definition of the inverse,
both sides are equal to ∗R.
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For axiom (M12), if x = r̂ for some r ∈ R, the axiom holds as a consequence of
Corollary 5.6 (3). If x = ∗R, then

(1̂ + 0̂ · ∗R)−1 = (1 + ∗R)−1 = ∗R−1 = ∗R = 1̂ + ∗R = 1̂ + 0̂ · ∗R.

Axiom (M13) is satisfied as a consequence of the definition of (0̂)−1. Finally,
axiom (M14) is satisfied as a consequence of (5.1).

6 Final remarks and open questions
In this paper we have introduced the notion of flexible involutive meadow, by means
of an equational axiomatization, and constructed some models based on the external
numbers and non-archimedean fields. We have also shown a model for common
meadows based on the real numbers and of involutive meadows based on finite
fields. We would like to point out that, with similar techniques, one could also
obtain meadows based on rational numbers.

The model for common meadows developed in Section 5.2 suggests that it is
possible to study a flexible version of common meadows, in the spirit of what has
been done in Section 4 for involutive meadows. In order to do so, it is possible to
adapt the axioms by replacing 0 with N(x), where N(x) is an error term analogous
to that of flexible involutive meadows.

In the context of external numbers, where N(x) is the neutrix part of x, and
for zeroless x, one has the inclusion N(x) ⊆ x · ⊘. This grounds the interpretation
of the flexible counterparts of axioms (M4), (M10) and (M12). Moreover, as in the
model discussed in Section 5.2, the element a can be taken as ∗R.

Section 4.4 unveils a connection between the two apparently very different alge-
braic structures of solids and flexible involutive meadows. This connection is in line
with other works connecting algebraic structures related with meadows and struc-
tures arising in the context of nonstandard analysis (see [11, 15]). We believe that
this line of research is worth exploring in future work.

To conclude, we mention some other possible directions of future work.
We would like to study related variants of meadows as well as their algebraic

properties. For example, the study of flexible cancellation meadows, i.e. meadows in
which the multiplicative cancellation axiom

x ̸= 0 ∧ x · y = x · z ⇒ y = z

or its flexible counterpart (where we substitute 0 by an error term e) holds; or flexible
arithmetical meadows in the sense of [4]; or flexible meadows of rational numbers
(see e.g. [6]). Are flexible arithmetical meadows, i.e. flexible meadows satisfying
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(A1) and (A2) (necessarily) connected with nonstandard models of arithmetic? As
for the flexible meadows of rational numbers, are they a minimal algebra? If so,
that might provide a connection with data types.
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1 Introduction

In [12] we have shown that full cut elimination holds for the extension of Gentzen’s
sequent calculi obtained by adding the Reflexivity Axiom ⇒ t = t, and the left
introduction rules for =:

Γ ⇒ ∆, F [x/r] =1
Γ ⇒ ∆, F [x/r] =2

r = s, Γ ⇒ ∆, F [x/s] s = r, Γ ⇒ ∆, F [x/s]

where F is a formula; F [x/r] and F [x/s], as in [16], denote the result of the re-
placement in F of all free occurrences of x by r or s and Γ, ∆ are finite multisets of
formulae, with |∆| = 0 in the intuitionistic case.

These rules correspond directly to the natural deduction rules for equality: in
particular =1 and =2 are the left introduction rules corresponding to the two, equally
natural, elimination rules for =. For that reason we consider the result of adding
them to LK and LJ to be the basic sequent calculi for first order logic with equality,
against which any other should be compared. Thus, the adequacy of calculi free of
structural rules requires that they be admissible in the system.

In [12] the above cut-elimination result is extended to other well motivated calculi
with rules where F [x/r] and F [x/s] occur in the antecedent of the premiss and of the
conclusion. The purpose of this work is to establish the adequacy of corresponding
systems free of structural rules, some of which, in the classical case, are of particular
interest in connection with the semantic tableau method for first order logic with
equality. For that we have to refer to systems of that sort as far as logic is concerned
such as the multisuccedent systems for minimal, intuitionistic and classical logic
originated with Dragalin’s [7] and denoted by m-G3[mic] in [16], that we will adopt
as our logical systems. Since we will be dealing exclusively with such multisuccedent
systems, as remarked in [16] (pg. 83), the prefix m- is redundant and we will drop it.
Thus G3i will denote the multisuccedent G3 calculus for intuitionistic logic, G3m
the analogous calculus for minimal logic, G3c the classical calculus and G3[mic] any
of such three calculi. We then adopt the Reflexivity Axiom in the form Γ ⇒ t = t,
to be denoted by Ref; restrict the formula F in =1 and =2 to be atomic and note
that it sufficient, as well as necessary, to repeat the principal formula r = s in
the antecedent of the premiss of the rule to obtain what may be considered a most
natural sequent calculus with equality free of structural rules. Actually such rules are
particular cases of those introduced in the classical case and shown, taken together
with the reflexivity axiom, to be semantically complete by H.Wang in [18]. We will
denote with Repr

1 and Repr
2 the rules so obtained, namely:
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r = s, Γ ⇒ ∆, P [x/r]
Repr

1
s = r, Γ ⇒ ∆, P [x/r]

Repr
2r = s, Γ ⇒ ∆, P [x/s] s = r, Γ ⇒ ∆, P [x/s]

where P is atomic (possibly an equality), called the context formula, while r = s
(s = r) is called the operating equality, r (s) the input (output) term and P [x/r]
(P [x/s]) the input (output) formula. In the classical case, the well known connection
between such kind of calculi and the semantic tableau method for first order logic
with equality developed for example in [9] and [8], add motivations to those in [12],
for the rules:

r = s, P [x/r], Γ ⇒ ∆
Repl

1
s = r, P [x/r], Γ ⇒ ∆

Repl
2r = s, P [x/s], Γ ⇒ ∆ s = r, P [x/s], Γ ⇒ ∆

Repl
2 corresponds to branch expansions in which strictness is required, namely the

formula P [x/s] in which the term replacement is operated in is checked out. When
strictness, as in [8], is not required, adopting for Rep the notation in [16], the
corresponding rules are:

r = s, P [x/s], P [x/r], Γ ⇒ ∆ Rep’ s = r, P [x/s], P [x/r], Γ ⇒ ∆ Rep
r = s, P [x/s], Γ ⇒ ∆ s = r, P [x/s], Γ ⇒ ∆

Rep corresponds to the Tableau Replacement Rule used in [8] pg. 289 together with
the Tableau Reflexivity Rule that allows the expansion of a branch by the addition
of any identity t = t.

Our results will be based on the following fact that follows from the main result in
[13]: for any set R of atomic rules for equality that we will consider, if the structural
rules are admissible in R, identified with the calculus that consists of the initial
sequents, including ⊥, Γ ⇒ ∆ in the intuitionistic and classical case, and the rules
in R, then they are admissible also in the calculus G3[mic]R obtained by adding
the rules in R to G3[mic].

2 Preliminaries on the logical calculi and Equality Rules
and Systems

The sequent calculus denoted by G3c in [16] (pg 83), has the following initial se-
quents and rules, where P is an atomic formula and A, B stand for any formula in a
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first order language (function symbols included) with bound variables distinct from
the free ones, and Γ and ∆ are finite multisets of formulae:

Initial sequents
P, Γ ⇒ ∆, P

Logical rules

A, B, Γ ⇒ ∆
L∧ Γ ⇒ ∆, A Γ ⇒ ∆, B

R∧
A ∧ B, Γ ⇒ ∆ Γ ⇒ ∆, A ∧ B

A, Γ ⇒ ∆ B, Γ ⇒ ∆
L∨ Γ ⇒ ∆, A, B

R∨
A ∨ B, Γ ⇒ ∆ Γ ⇒ ∆, A ∨ B

Γ ⇒ ∆, A B, Γ ⇒ ∆
L → A, Γ ⇒ ∆, B

R →
A → B, Γ ⇒ ∆ Γ ⇒ ∆, A → B

L⊥⊥, Γ ⇒ ∆

A[x/t], ∀xA, Γ ⇒ ∆
L∀ Γ ⇒ ∆, A[x/a]

R∀∀xA, Γ ⇒ ∆ Γ ⇒ ∆, ∀xA

A[x/a], Γ ⇒ ∆
L∃ Γ ⇒ ∆, ∃xA, A[x/t]

R∃∃xA, Γ ⇒ ∆ Γ ⇒ ∆, ∃xA

In G3i the rules L →, R → and R∀ are replaced by:

A → B, Γ ⇒ ∆, A B, Γ ⇒ ∆
Li →

A, Γ ⇒ B
Ri →A → B, Γ ⇒ ∆ Γ ⇒ ∆, A → B

Γ ⇒ A[x/a]
Ri∀Γ ⇒ ∆, ∀xA

Finally G3m is obtained from G3i by replacing L⊥ by the initial sequents
⊥, Γ ⇒ ∆, ⊥.

In all such systems a is a free variable that does not occur in the conclusion of
L∃ and R∀.
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G3[mic] denotes any of the systems G3m, G3i or G3c.

The left and right weakening rules, LW and RW have the form:

Γ ⇒ ∆ LW Γ ⇒ ∆ RW
A, Γ ⇒ ∆ Γ ⇒ ∆, A

The left and right contraction rules, LC and RC have the form:

A.A, Γ ⇒ ∆ LC Γ ⇒ ∆, A, A RC
A, Γ ⇒ ∆ Γ ⇒ ∆, A

LC= is the rule LC in which the contracted formula A is an equality.
The cut rule has the form:

Γ ⇒ ∆, A A, Λ ⇒ Θ CutΓ, Λ ⇒ ∆, Θ

Weakening, contraction and cut are the structural rules whose admissibility we
are going to investigate.

In consequence of the more general result concerning the addition of atomic rules
to the above sequent calculi established in [13], for any set R of the equality rules
in the Introduction and the further single premiss equality rules to be introduced in
the sequel we have the following:

Theorem 1. [Theorem 1 in [13]] If the structural rules are admissible in R, then
they are admissible in G3[mic]R as well.

that will be instrumental for the present work.

A further rule that will play an important auxiliary role is the following congru-
ence rule:

Γ1 ⇒ ∆1, r = s Γ2 ⇒ ∆2, P [x/r] CNGΓ1, Γ2 ⇒ ∆1, ∆2, P [x/s]

Note The rule CNG is among those used in the extension of the system CERES
in [1], pg.170.

2.1 Equality rules and systems
For easier reading of the paper we collect the rules in the Introduction as well as
those to be introduced in the sequel:
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r = s, Γ ⇒ ∆, P [x/r]
Repr

1
s = r, Γ ⇒ ∆, P [x/r]

Repr
2r = s, Γ ⇒ ∆, P [x/s] s = r, Γ ⇒ ∆, P [x/s]

r = s, P [x/r], Γ ⇒ ∆
Repl

1
s = r, P [x/r], Γ ⇒ ∆

Repl
2r = s, P [x/s], Γ ⇒ ∆ s = r, P [x/s], Γ ⇒ ∆

r = s, P [x/s], P [x/r], Γ ⇒ ∆ Rep’ s = r, P [x/s], P [x/r], Γ ⇒ ∆ Rep
r = s, P [x/s], Γ ⇒ ∆ s = r, P [x/s], Γ ⇒ ∆

• Repr=r
1 and Repr=r

2 are Repr
1 and Repr

2 subject to the restriction that when
the context formula is an equality only its right-handside is modified.

• Repr/=
1 and Repr/=

2 are Repr
1 and Repr

2 restricted to context formulae that are
equalities.

• Repl/(=)
1 and Repl/(=)

2 are Repl
1 and Repl

2 restricted to context formulae that
are not equalities.

• Repl+
1 and Repl+

2 are Repl
1 and Repl

2 extended with the rules:

s = r, E[x/s], E[x/r], Γ ⇒ ∆ and r = s, E[x/s], E[x/r], Γ ⇒ ∆
s = r, E[x/s], Γ ⇒ ∆ r = s, E[x/s], Γ ⇒ ∆

where E is an equality.

The notation of the various systems to be considered are going to reflect directly
the rules that they contain. For instance:

Rr
12 = {Ref, Repr

1, Repr
2}

Rrl
12 = {Ref, Repr

1, Repr
2, Repl

1, Repl
2}

Rrl
2 = {Ref, Repr

2, Repl
2}

Rr=r
12 = {Ref, Repr=r

1 Repr=r
2 }

Rr/=,l/(=)
12 = {Ref, Repr/=

1 , Rep r/=
2 , Rep l/(=)

1 , Rep l/(=)
2 }

Rrl
12 = {Ref, Repr

1, Repr
2, Repl

1, Repl
2}

Rrl+
2 = {Ref, Repr

2, Repl+
2 }
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3 Basic results concerning the equality rules

3.1 Admissibility of Weakening and Right Contraction

The weakening rules are clearly height preserving admissible in the systems consist-
ing of Ref and some of the equality rules. The single premiss equality rules modify
at most one formula in the succedent of their premiss. Furthermore the initial se-
quents and those in Ref remain initial sequents or in Ref if all the formulae in their
succedent, except the principal one, are eliminated. By a straightforward induction
on the height of derivations it follows that if Γ ⇒ ∆ has a derivation in the systems
we are considering, then there is a formula A in ∆ such that Γ ⇒ A has a deriva-
tion of the same height. That is the case also for the two premisses rule CNG that
eliminates a formula from the succedent of its first premiss and modifies a single
formula of the succedent of the second. As a consequence the right contraction rule
is height-preserving admissible in all the systems we are going to deal with.

3.2 Basic equivalence property

A basic tool for our investigation is provided by the following proposition, where by
an equality rule we mean any of the rules presented in the introduction other than
Ref:

Proposition 2. All the equality rules are equivalent in {Ref, Cut, LC}.

Proof We first show that if we add any one of the equality rules to {Ref, Cut,
LC}, then the following rule of Left Symmetry becomes derivable:

r = s, Γ ⇒ ∆ Symm
s = r, Γ ⇒ ∆

Case 1.1. The rule added is Repr
1. Then we have the following derivation of Symm:

s = r ⇒ s = s
s = r ⇒ r = s r = s, Γ ⇒ ∆ Cut

s = r, Γ ⇒ ∆

Case 1.2. The rule added is Repr
2. Similar to Case 1.1

Case 2.1. The rule added is Repl
1. Then we have the following derivation:
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r = s, Γ ⇒ ∆ LW
r = s, r = r, Γ ⇒ ∆

Repl
1r = s, s = r, Γ ⇒ ∆

Repl
1⇒ r = r r = r, s = r, Γ ⇒ ∆ Cut

s = r, Γ ⇒ ∆

Case 2.2. The rule added is Repl
2. Then the derivation is the same as for case

2.1, except that LW introduces s = s and Repl
2 is used instead of Repl

1.
Case 3.1. The rule added is Rep. Then we have the following derivation:

r = s, Γ ⇒ ∆ LW
r = s, s = s, s = r, Γ ⇒ ∆ Rep⇒ s = s s = s, s = r, Γ ⇒ ∆ Cut
s = r, Γ ⇒ ∆

Case 3.2 The rule added is Rep’. Similar to Case 3..
Case 4. The rule added is CNG. Then we have the following derivation:

s = r ⇒ s = r ⇒ s = s
s = r ⇒ r = s r = s, Γ ⇒ ∆ Cut

s = r, Γ ⇒ ∆

Clearly the derivability of Symm makes equivalent the rules of the same type with
index 1 and 2. Thus it suffices to verify the equivalence (that does not depend on
the availability of Symm) between Repr

1 and Repl
2; Repl

1 and Rep; Repr
1 and CNG.

We leave the easy details to the reader. 2.

Corollary 3. All the systems G3[mic]R, for R that consists of Ref and of some
of the equality rules and such that the structural rules are admissible in R, are
equivalent.

4 Admissibility of the structural rules
4.1 Necessity of the repetition of the operating equalities in the

premiss of the equality rules
We show that, as stated in the introduction, the addition of Ref, =1 and =2 to
G3[mic] is not sufficient to yield appropriate extensions free of structural rules.
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Actually even if, beside Ref, =1 and =2, also the Cut rule is added, in the resulting
system the left contraction rule remains not admissible.

Let R = {Ref, =1, =2, Cut}. We will prove that LC is not admisssible in G3cR

by showing that the following sequent:

∗) a = f(a) ⇒ a = f(f(a))

whose expansion a = f(a), a = f(a) ⇒ a = f(f(a)) is immediately derivable by
means of an =2-inference applied to a = f(a) ⇒ a = f(a), is not derivable in
R. In fact if ∗) were derivable in G3cR (as for Proposition 7 in [13]) ∗) would
have a derivation in which no logical inference different from L⊥ precedes a =1,
=2 or Cut-inference. As a consequence ∗) would be derivable in R itself, which is
impossible.

In order to show that ∗) is not derivable in R, we first note that if a sequent
Γ ⇒ r = s is derivable in R, then the sequent Γ= ⇒ r = s, where Γ= denotes
the multiset of equalities in Γ, has a derivation in R that involves only equalities.
An easy induction on the height of such derivations shows that if Γ is a multiset of
identities i..e equalities of the form r = r and Γ ⇒ r = s is derivable in R then r = s
is itself an identity (r ≡ s). That being noted, we prove the following:

Proposition 4. If Γ is a multiset of identities and E, Γ ⇒ E′ is derivable in R,
where E′ coincides with a = f(f(a)) or with f(f(a)) = a, then also E has one of
such two forms. Hence a = f(a) ⇒ a = f(f(a)) is not derivable in R.

Proof We proceed by induction on the height of a derivation D in R of E, Γ ⇒
E′.

If h(D) = 0, then E, Γ ⇒ E′ must be an initial sequent and E coincides with E′

so that the claim is trivial.
If h(D) > 0 and D ends with an =1 inference that introduces E in the antecedent,

then D has the form:

D0
Γ ⇒ r = s
E, Γ ⇒ E′

By the previous remark r = s is an identity r = r and we note that the only
possibilities of obtaining E′ by a substitution applied to r = r is that r coincides
with a or with f(f(a)) in which cases E is necessarily a = f(f(a)) or f(f(a)) = a.

The same argument applies if D ends with an =2-inference introducing E.
If D ends with an =1 or =2-inference introducing a formula in Γ, which is there-

fore an identity, the conclusion is a trivial consequence of the induction hypothesis.
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If D ends with a Cut, we have two cases.
Case1. D has the form:

D0 D1
Γ1 ⇒ A A, E, Γ2 ⇒ E′

E, Γ1, Γ2 ⇒ E′

In this case, looking at D0 we have that A is itself an identity so that it suffices
to apply the induction hypothesis to D1 to conclude that E is a = f(f(a)) or
f(f(a)) = a.

Case 2 D has the form:

D0 D1
E, Γ1 ⇒ A A, Γ2 ⇒ E′

E, Γ1, Γ2 ⇒ E′

By the induction hypothesis applied to D1 A has one of the two forms a = f(f(a))
or f(f(a)) = a so that it suffices to apply the induction hypothesis to D0 to conclude
that the same holds for E.

That a = f(a) ⇒ a = f(f(a)) is not derivable in R follows by letting Γ be the
empty set and E′ the equality a = f(f(a)). 2

4.2 Sufficiency of the repetition of the operating equalities in the
premiss

We now prove that the repetition of the operating equalities in the premiss of the
=1 and =2-rules, which yields the Repr

1 and Repr
2 rules, suffices to yield a system,

indeed a very natural one, for which the structural rules are admissible.

Theorem 5. For Rr
12 = {Ref, Repr

1, Repr
2}, the structural rules are admissible in

G3[mic]R
r
12.

Proof By Theorem 1 it suffices to show that the structural rules are admissible
in Rr

12. The admissibility of LC is straightforward, since the rules of Rr
12 do not

change the antecedent of their premiss. For the admissibility of Cut we transform
a given derivation D in Rr

12 + Cut into a derivation D′ in {Ref, LC, CNG, Cut} by
using the following derivation of Repr

1 from CNG and LC=:

r = s ⇒ r = s r = s, Γ ⇒ ∆, P [x/r] CNG
r = s, r = s, Γ ⇒ ∆, P [x/s] LC=

r = s, Γ ⇒ ∆, P [x/s]
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and the derivation of Repr
2 from CNG and LC= that can be obtained from that of

Repr
1 thanks to the derivation of Symm from CNG shown in Case 4. of the proof of

Proposition 2.
From D′ we eliminate the applications of the Cut rule in order to obtain a

derivation D′′ in {Ref, LC, CNG}. To show that this is possible, because of the
presence of the rule LC, we have to show that the following more general rule:

Γ ⇒ ∆, A An, Λ ⇒ Θ
Γ, Λ ⇒ ∆, Θ

where An denotes the multiset that contains A n times and nothing else, is admissible
in {Ref, LC, CNG}. That is shown by a straightforward induction on the height of
the derivation of An, Λ ⇒ Θ.

Then to obtain, from D′′, the desired cut-free derivation in Rr
12 of the endsequent

of D, it suffices to exploit the admissibility of LC and CNG in Rr
12. The admissibility

of CNG in Rr
12 + LC, hence in Rr

12, can be proved by induction on the height of
the derivation of its first premiss (see [12] for the analogous result for the sequent
calculi with structural rules). In fact let D be of the form:

D0 D1
Γ′ ⇒ ∆, r = s Λ ⇒ Θ, P [x/r] CNGΓ, Λ ⇒ ∆, Θ, P [x/s]

where D0 and D1 are derivations in Rr
12 + LC. We have to show that also the

conclusion of D is derivable in Rr
12 + LC. If r and s coincide, then the conclusion

is obtained by weakening the conclusion of D1. Assuming r is distinct from s, we
proceed by induction on the height h(D0) of D0.

If h(D0) = 0 and D0 is an initial sequent with principal formula common to Γ
and ∆, then the conclusion of D is also an initial sequent and the given of CNG-
inference can be eliminated, while if it is of the form r = s, Γ′ ⇒ ∆, r = s, then D,
namely

D1
r = s, Γ′ ⇒ ∆, r = s Λ ⇒ Θ, P [x/r]

r = s, Γ′, Λ ⇒ ∆, Θ, P [x/s]
is transformed into:

D1
Λ ⇒ Θ, P [x/r] LW

r = s, Γ′, Λ ⇒ ∆, Θ, P [x/r]
Repr

1r = s, Γ′, Λ ⇒ ∆, Θ, P [x/s]
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If h(D0) > 0 and D0 ends with an Repr
1- inference and the principal formula occurs in

∆ then the derivation of the conclusion is obtained as a straightforward consequence
of the induction hypothesis. On the other hand if the principal formula is r = s of
the form r◦[x/q] = s◦[x/q], with D of the form:

D00
p = q, Γ′ ⇒ ∆, r◦[x/p] = s◦[x/p] D1
p = q, Γ′ ⇒ ∆, , r◦[x/q] = s◦[x/q] Λ ⇒ Θ, P [x/r◦[x/q]]

p = q, Γ′, Λ ⇒ ∆, Θ, P [x/s◦[x/q]]

D can be transformed into:

D1
Λ ⇒ Θ, P [x/r◦[x/q]] LWD00 p = q, Λ ⇒ Θ, P [x/r◦[x/q]]

Repr
2p = q, Γ′ ⇒ ∆, r◦[x/p] = s◦[x/p] p = q, Λ ⇒ Θ, P [x/r◦[x/p]] ind

p = q, p = q, Γ′, Λ ⇒ ∆, Θ, P [x/s◦[x/p]]
Repr

1p = q, p = q, Γ′, Λ ⇒ ∆, Θ, P [x/s◦[x/q]] LC=
p = q, Γ′, Λ ⇒ ∆, Θ, P [x/s◦[x/q]]

where ind means that, by induction hypothesis, the given derivations in Rr
12 + LC

of the sequents above the line can be transformed into a derivation in Rr
12 + LC of

the sequent below the line. If the premiss is obtained by an Repr
2 the argument is

the same except that in the transformed derivation we use Repr
1 in place of Repr

2
and conversely. The case in which the first premiss is obtained by means of an
LC-inference is straightforward. 2

Corollary 6. Rrl
12 = {Ref, Repl

1, Repl
2, Repr

1, Repr
2} and

Rr
12 are equivalent systems over which the structural rules are admissible.

Proof Obviously Rr
12 is a subsystem of Rrl

12. The converse holds by the pre-
vious Theorem and the equivalence of the equality rules over systems containing
{ Ref, Cut, LC} established in Proposition 2. 2

5 Restricting the Equality Rules
Theorem 5 can be strengthened by requiring that, when the context formula is an
equality, the rules Repr

1 and Repr
2 change only its right-hand side. Let Repr=r

1 and
Repr=r

2 be the restrictions of Repr
1 and Repr

2 obtained in that way.
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Theorem 7. The system Rr=r
12 = {Ref, Repr=r

1 , Repr=r
2 } is equivalent to Rr

12, hence
the structural rules are admissible in G3[mic]R

r=r
12 .

Proof It suffices to show that if a sequent of the form Γ ⇒ p = q is derivable in
Rr

12, then it is derivable in Rr=r
12 as well. Given a derivation D in Rr

12 of Γ ⇒ p = q
we proceed by induction on the number of Repr

1 or Repr
2 -inferences that act on an

equality but are not Repr=r
1 or Repr=r

2 -inferences, to be called undesired inferences.
If there are none we are done. Otherwise we select the topmost one call it J . Let
us assume that it is of the form:

r = s, Γ− ⇒ p′◦[x/r] = q′
Repr

1r = s, Γ− ⇒ p′◦[x/s] = q′

Since an initial sequent of the form t = t′, Γ ⇒ t = t′ is derivable from t = t′, Γ ⇒
t = t by means of a Repr=r

1 -inference, we may assume that the initial sequent of D
has the form

r = s, Γ− ⇒ p′◦[x/r] = p′◦[x/r]

If we replace the initial sequent of D by:

r = s, Γ− ⇒ p′◦[x/s] = p′◦[x/s]
Repr=r

2r = s, Γ− ⇒ p′◦[x/s] = p′◦[x/r]

and the successive left-hand sides p′◦[x/r] of the right equalities of D down to the
premiss of J by p′◦[x/s] we obtain the conclusion of J that therefore can be elimi-
nated from the given derivation of Γ ⇒ p = q thus obtaining a derivation that has
one less undesired inference than D. If J is an Repr

2 the argument is the same except
that the new initial inference is a Repr=r

1 -inference rather than a Repr=r
2 -inference.

2

Let Repr/=
1 and Repr/=

2 be the rules Repr=r
1 and Repr=r

2 restricted to context
formulae that are equalities and Repl/(=)

1 and Repl/(=)
2 be the rules Repl

1 and Repl
2

restricted to context formulae that are not equalities.

Theorem 8. Let Rr/=,l/(=)
12 be {Ref, Repr/=

1 , Rep r/=
2 , Rep l/(=)

1 , Rep l/(=)
2 }.

Rr/=,l/(=)
12 is equivalent to Rr

12, therefore the structural rules are admissible in
G3[mic]R

r/=
l/(=).
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Proof By Corollary 6 every sequent derivable in Rr/=,l/(=)
12 is derivable in Rr

12
as well. For the converse we note that if Γ ⇒ ∆ is derivable in Rr

12, then there
is a formula A in ∆ such that Γ ⇒ A is also derivable in that system. If A is an
equality, then the derivation of Γ ⇒ A can use only Repr/=

1 and Repr/=
2 , so that it

belongs to Rr/=,l/(=)
12 . If A is not an equality we proceed by induction on the height

of the derivation D in Rr
12 of Γ ⇒ A to show that it can be transformed into a

derivation (of the same height) in Rr/=,l/(=)
12 . If h(D) = 0, then Γ ⇒ A is an initial

sequent and the conclusion is obvious. If h(D) = n + 1, then D ends either with an
Repr

1-inference or with an Repr
2-inference. Let us assume, for example, that D ends

with a Repr
1-inference. Then D has the form:

P1, Γ1 ⇒ P1
D0

r = s, Γn ⇒ Pn[x/r]
r = s, Γn ⇒ Pn[x/s]

By induction hypothesis there is a derivation D′
0 in Rr/=,l/(=)

12 (of height n) of r =
s, Γn ⇒ Pn[x/r]. D′

0 has the form:

r = s, Pn[x/r], Λ ⇒ Pn[x/r]
r = s, Λ′ ⇒ Pn[x/r]

...
r = s, Γn ⇒ Pn[x/r]

In fact Repl/(=)
1 and Repl/(=)

2 do not introduce any new equality in their conclusion,
so that all the equalities in the endsequent of D′

0, in particular r = s, are present in
the antecedent of every sequent in D′

0. If we replace all the occurrences of Pn[x/r]
in the succedents of the sequents of D0 by P [x/s] and introduce an initial Repl/(=)

2 -
inference replacing s by r in Pn[x/r] we obtain the desired derivation D′ in Rr/=,l/(=)

12
(of height n + 1), namely:

r = s, Pn[x/s], Λ ⇒ Pn[x/s]
r = s, Pn[x/r], Λ ⇒ Pn[x/s]

r = s, Λ′ ⇒ Pn[x/s]
...

r = s, Γn ⇒ Pn[x/s]
2
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Clearly the proof goes through without any change if Repr/=
1 and Repr/=

2 are re-
stricted to Repr/=r

1 and Repr/=r

2 that change only the right-hand side of the equality
that they transform.

Thus, letting Rr/=r,l/(=)
12 = {Ref, Rep l/(=)

1 , Rep l/(=)
2 , Repr/=r

1 , Rep r/=r

2 }, we
have the following stregthened form of the previous Theorem:

Theorem 9. Rr/=r,l/(=)
12 is equivalent to Rr

12, therefore the structural rules are ad-
missible in G3Rr/=r,l/(=)

12

Interpreted in terms of the alternate tableau system in [8], pg. 294 where a
branch can be closed if the negation of an identity ¬t = t appears on it, and left-
right and right-left replacement of equals can be applied to atomic formulae and
to negation of equalities, this result, in the classical case, means that, strictness
can be imposed (i.e. the formulae in which a replacement is performed are checked
out) and the replacement rule can be applied only to atomic formula that are not
equalities and to the right-hand side of negation of equalities. Note that in the same
framework, by Theorem 5 strictness can be imposed and replacement of equals can
be limited to negations of atomic formulae, whether equalities or not.

5.1 Orienting replacement in languages without function symbols
We prove that for languages without function symbols the structural rules are ad-
missible in Rrl

2 = {Ref, Repr
2, Repr

2} by showing that for such languages Rrl
2 is in

fact equivalent to Rr
12. The same holds, with the same proofs, for Rrl

1 .

Notation In the following a, b, c will stand for constants or free variables and
a ≈ b may denote either one of a = b or b = a.

Definition 10. A chain of equalities connecting a and b denoted by γ(a, b) is a
multiset of equalities that can be arranged into a sequence of the form a ≈ a1, a1 ≈
a2, . . . , an−1 ≈ b. The empty set is a chain that connects any term with itself.

Lemma 11. Given a chain γ(a, b) and an atomic formula A with at most one
occurrence of x

a) γ(a, b) ⇒ a = b is derivable in Rrl
2

b) A[x/a], γ(a, b) ⇒ A[x/b] is derivable in Rrl
2

Proof In both cases we proceed by induction on the length n of a ≈ a1, a1 ≈
a2, . . . , an−2 ≈ an−1, an−1 ≈ b.
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a) For n = 0, γ(a, b) = ∅ and a ≡ b so that γ(a, b) ⇒ a = b is the instance
⇒ a = a of Ref. For n = 1, γ(a, b) is either a = b or b = a. In the former case
γ(a, b) ⇒ a = b is the initial sequent a = b ⇒ a = b, while in the latter case it has
the following derivation in Rrl

2 :

b = a ⇒ a = a
Repr

2b = a ⇒ a = b

Assume n > 1. If an−1 ≈ b is an−1 = b, by induction hypothesis:

a ≈ a1, . . . , an−2 ≈ b ⇒ a = b

has a derivation in Rrl
2 from which we obtain the desired derivation in Rrl

2 by the
admissibility of LW that allows for the introduction of an−1 = b and a Repl

2-inference
using an−1 = b as operating equality, namely:

a ≈ a1, . . . , an−2 ≈ b ⇒ a = b LW
a ≈ a1, . . . , an−2 ≈ b, an−1 = b ⇒ a = b

Repl
2a ≈ a1, . . . , an−2 ≈ an−1, an−1 = b ⇒ a = b

If an−1 ≈ b is b = an−1, by induction hypothesis:

a ≈ a1, . . . , an−2 ≈ an−1 ⇒ a = an−1

has a derivation D in Rrl
2 from which we obtain the desired derivation in Rrl

2 by the
admissibility of LW that allows for the introduction of b = an−1 and a Repr

2-inference
using b = an−1, namely:

a ≈ a1, . . . , an−2 ≈ an−1 ⇒ a = an−1 LW
a ≈ a1, . . . , an−2 ≈ an−1, b = an−1 ⇒ a = an−1 Repr

2a ≈ a1, . . . , an−2 ≈ an−1, b = an−1 ⇒ a = b

b) For n = 0, A[x/a], γ(a, b) ⇒ A[x/b]) reduces to the initial sequent
A[x/a] ⇒ A[x/a]. For n = 1 we have the following derivations, depending on

whether a ≈ b is a = b or b = a:

A[x/b], a = b ⇒ A[x/b]
Repl

2
A[x/a], b = a ⇒ A[x/a]

Repr
2A[x/a], a = b ⇒ A[x/b] A[x/a], b = a ⇒ A[x/b]

For n > 1 the argument is similar to that in a). If an−1 ≈ b is an−1 = b, we note
that by induction hypothesis we have a derivation in Rrl

2 of

A[x/a], a ≈ a1, . . . , an−2 ≈ b ⇒ A[x/b]
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from which the desired derivation is obtained by a weakening introducing an−1 = b
followed by a Repl

2-inference transforming an−2 ≈ b into an−2 ≈ an−1.
If an−1 ≈ b is b = an−1, by induction hypothesis we have a derivation in Rrl

2 of

A[x/a], a ≈ a1, . . . , an−2 ≈ an−1 ⇒ A[x/an−1]

from which the desired derivation is obtained by a weakening introducing b = an−1
and a Repr

2-inference transforming A[x/an−1] into A[x/b]. 2

Lemma 12. Given an atomic formula A, m variables x1, . . . , xm having at most
one occurrence in A and m chains γ1(a1, b1), . . . , γm(am, bm) the sequent:

A[x1/a1, . . . , xm/am], γ1(a1, b1), . . . , γm(am, bm) ⇒ A[x1/b1, . . . , xm/bm]

is derivable in Rrl
2 .

Proof We proceed by a principal induction on m and a secondary induction on
the length of γm(am, bm). For m = 1 the claim reduces to the previous lemma part
b). Assuming it holds for m − 1 we have

1) A[x1/a1, . . . , xm−1/am−1, xm/am), γ1(a1, b1), . . . , γm−1(am−1, bm−1) ⇒
⇒ A[x1/b1, . . . , xm−1/bm−1, xm/am]

as well as

2) A[x1/a1, . . . , xm−1/am−1, xm/bm], γ1(a1, b1), . . . , γm−1(am−1, bm−1) ⇒
⇒ A[x1/b1, . . . , xm−1/bm−1, xm/bm]

are derivable in Rrl
2 . Then we can proceed by induction on the length l of γm(am, bm)

to show that also

A[x1/a1, . . . , xm/am], γ1(a1, b1), . . . , γm(am, bm) ⇒ A[x1/b1, . . . , xm/bm]

is derivable in Rrl
2 . If l = 0 then am ≡ bm and the conclusion is immediate. If

l = 1 then γm(am, bm) is either am = bm or bm = am. In the first case we
weaken the sequent 2) by adding am = bm and then apply a Repl

2-inference to
tranform A[x1/a1, . . . , xm−1/am−1, xm/bm] in the antecedent of 2) into A[x1/a1,
. . . , xm−1, xm/am]. Similarly if γm(am, bm) is bm = am, we add bm = am to
the antecedent of 1) and then apply a Repr

2-inference to transform A[x1/b1, . . . ,
xm−1/bm−1, xm/am] in the consequent of 2) into A[x1/b1, . . . , xm−1/bm−1, xm/bm].
For l > 1 let γ(am, bm) be am ≈ a1

m, a1
m ≈ a2

m, . . . , al−2
m ≈ al−1

m , al−1
m ≈ bm. If

al−1
m ≈ bm is bm = al−1

m we note that by induction hypothesis:
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A[x1/a1, . . . , xm−1/am−1, xm/am], γ1(a1, b1), . . . , γm−1(am−1, bm−1),
am ≈ a1

m, a1
m ≈ a2

m, . . . , al−2
m ≈ al−1

m ⇒ A[x1/b1, . . . , xm−1/bm−1, xm/al−1
m ]

is derivable in Rrl
2 . Then it suffices to weaken the antecedent by adding bm =

al−1
m and apply a Repr

2-inference to transform A[x1/b1, . . . , xm−1/bm−1, xm/al−1
m ] into

A[x1/b1, . . . , xm−1/bm−1, xm/bm] to obtain the desired derivation in Rrl
2 of

∗) A[x1/a1, . . . , xm−1/am−1, xm/am], γ1(a1, b1), . . . , γm−1(am−1, bm−1),
am ≈ a1

m, a1
m ≈ a2

m, . . . , al−2
m ≈ al−1

m , bm = al−1
m

⇒ A[x1/b1, . . . , xm−1/bm−1, xm/bm]

On the other hand if al−1
m ≈ bm is al−1

m = bm we note that by induction hypothesis
there is a derivation in Rrl

2 of

A[x1/a1, . . . , xm−1/am−1, xm/am], γ1(a1, b1), . . . , γm−1,

am ≈ a1
m, a1

m ≈ a2
m, . . . , al−2

m ≈ bm

⇒ A[x1/b1, . . . , xm−1/bm−1, xm/bm]

that can be weakened by the addition of al−1
m = bm in the antecedent to be used

to transform, by means of a Repl
2-inference, al−2

m ≈ bm into al−2
m ≈ al−1

m in order to
obtain a derivation of ∗) in Rrl

2 . 2

Lemma 13. a) If Γ ⇒ a = b is derivable in Rr
12, then Γ includes a chain γ(a, b).

b) If A is not an equality and Γ ⇒ A is derivable in Rr
12, then for some m

there are two m-tuples a1, . . . , am and b1, . . . , bm, such that A has the form
A◦[x1/b1, . . . , xm/bm] and Γ contains A◦[x1/a1, . . . , xm/am] as well as m
chains γ1(a1, b1), . . . , γm(am, bm).

Proof By Theorem 7 we can proceed by induction on the height of a derivation
D in Rr=r

12 of Γ ⇒ a = b or Γ ⇒ A.
a) If h(D) = 0 then Γ ⇒ a = b is an instance of Ref i.e. a ≡ b and we can

let γ(a, b) = ∅ or it is an initial sequent, i.e. a = b occurs in Γ and we can let
γ(a, b) = {a = b}.

If h(D) > 0 and D ends with a Repr=r
1 -inference, i.e it is of the form:

D0
a = b, Γ− ⇒ c = a
a = b, Γ− ⇒ c = b
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by induction hypothesis we have that a = b, Γ− is of the form γ′(c, a), Γ−−. If a ≈ b
does not belong to γ′(c, a) it suffices to let γ(a, b) = γ′(c, a) ∪ {a = b}. Otherwise,
since γ′(c, a) can be represented as

c ≈ a1, . . . , ai ≈ a, a ≈ b, b ≈ ai+3, . . . , an−1 ≈ a

we can let γ(c, b) = {c ≈ a1, . . . , ai ≈ a, a ≈ b}. The same argument applies if D
ends with a Repr=r

2 -inference.
b) If h(D) = 0 then A occurs in Γ and the claim holds with m = 0.
If h(D) > 0 and D ends with a Repr

1-inference, assuming, for the sake of nota-
tional simplicity, that the induction hypothesis holds with m′ = 2, the last inference
of D has one of the following three forms:

i) b1 = b, A◦[x1/a1, x2/a2], γ′
1(a1, b1), γ′

2(a2, b2), Γ− ⇒ A◦[x1/b1, x2/b2]
b1 = b, A◦[x1/a1, x2/a2], γ′

1(a1, b1), γ′
2(a2, b2), Γ− ⇒ A◦[x1/b, x2/b2]

ii) b2 = b, A◦[x1/a1, x2/a2], γ′
1(a1, b1), γ′

2(a2, b2), Γ− ⇒ A◦[x1/b1, x2/b2]
b2 = b, A◦[x1/a1, x2/a2], γ′

1(a1, b1), γ′
2(a2, b2), Γ− ⇒ A◦[x1/b1, x2/b]

iii) a = b, A◦[x1/a1, x2/a2, x/a], γ′
1(a1, b1), γ′

2(a2, b2), Γ− ⇒ A◦[x1/b1, x2/b2, x/a]
a = b, A◦[x1/a1, x2/a2, x/a], γ′

1(a1, b1), γ′
2(a2, b2), Γ− ⇒ A◦[x1/b1, x2/b2, x/b]

In case i), if b1 ≈ b does not belong to γ′
1(a1, b1) it suffices to let γ1(a1, b) =

γ′(a1, b1) ∪ {b1 = b} while if b1 ≈ b does belong to γ′
1(a1, b1), as in the similar case

concerning a), we have that γ′
1(a1, b1) already contains a chain connecting a1 and b

that can be taken as γ1(a1, b). In both cases we let γ2 = γ′
2 so that m = m′.

Case ii) is entirely similar to Case i).
Finally in Case iii) it suffices to let γ1 = γ′

1, γ2 = γ′
2 and γ3 = {a = b} so that

m = 3. 2

As an immediate consequence of the two previous lemmas and the admissibility
of left weakening we have the following:

Proposition 14. For languages without function symbols, a sequent derivable in
Rr

12 is derivable also in Rrl
2 .

Theorem 15. For languages without function symbols, Rrl
2 is equivalent to Rr

12,
hence the structural rules are admissible in G3[mic]R

rl
2 .
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Proof By Corollary 6 Rrl
2 is a subsystem of Rr

12 and the converse holds by the
previous Proposition. 2

In the classical case, interpreted in terms of the tableau system introduced in [9],
which deals with languages without function symbols, this results is a remarkable
improvement of the result in 5.1 of [9], since it means that not only strictness can
be required, in contrast with the author’s emphasized warning "Don’t check either
premiss" (pg.77), but also that replacement can be restricted to left-right replace-
ment.

5.2 Orienting replacement in languages with function symbols
Let Repl+

1 and Repl+
2 be the rules Repl

1 and Repl
2 whose instances concerning equal-

ities (E) are replaced by:

s = r, E[x/s], E[x/r], Γ ⇒ ∆ and r = s, E[x/s], E[x/r], Γ ⇒ ∆
s = r, E[x/s], Γ ⇒ ∆ r = s, E[x/s], Γ ⇒ ∆

respectively.

Note that, thanks to the admissibility of left weakening, Repl+
1 and Repl+

2 are
strengthening of Repl

1 and Repl
2 respectively. On the other hand, it is straightfor-

ward that Proposition 2 extends to such rules as well.

Proposition 16. The rule Repr
1 is admissible in Rrl+

2 = {Ref, Repl+
2 , Repr

2}. The
same holds with 1 and 2 exchanged.

Proof We may assume that all the rules under consideration replace exactly one
occurrence of a term by another (see [12] and [14]). Then we proceed by induction
on the height h(D) of a derivation D in {Ref, Repr

1, Repl+
2 , Repr

2} that ends with
an Repr

1-inference and contains no other Repr
1-inference, to show that D can be

transformed into a derivation D′ in Rrl+
2 of the same endsequent. If h(D) = 1, then

D has the form:

r = s, Γ ⇒ ∆, P [x/r]
r = s, Γ ⇒ ∆, P [x/s]

where r = s, Γ ⇒ ∆, P [x/r] is either an initial sequent or an instance of Ref. Case
1. r = s, Γ ⇒ ∆, P [x/r] is an initial sequent. Then we have the following subcases:

Case 1.1. (r = s, Γ)∩∆ ̸= ∅, then r = s, Γ ⇒ ∆, P [x/s] is also an initial sequent.
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Case 1.2. r = s, Γ ⇒ ∆, P [x/r] is of the form r = s, P [x/r], Γ′ ⇒ ∆, P [x/r].
Then D can be transformed into:

r = s, P [x/s], Γ′ ⇒ ∆, P [x/s]
Repl

2r = s, P [x/r], Γ′ ⇒ ∆, P [x/s]

Case 1.3. r = s, Γ ⇒ ∆, P [x/r] is of the form r = s, Γ ⇒ ∆, r = s.
Case 1.3.1.P ≡ x = s, hence D has the form:

r = s, Γ ⇒ ∆, (x = s)[x/r]
r = s, Γ ⇒ ∆, (x = s)[x/s]

then the conclusion of D is an instance of Ref, that can be taken as D′.
Case 1.3.2. P ≡ s◦, with s◦[x/r] ≡ s, hence D has the form:

r = s◦[x/r], Γ ⇒ ∆, r = s◦[x/r]
r = s◦[x/r], Γ ⇒ ∆, r = s◦[x/s◦[x/r]]

Then D can be transformed into:

r = s◦[x/r], Γ ⇒ ∆, s◦[x/s◦[x/r]] = s◦[x/s◦[x/r]]
Repr

2r = s◦[x/r], Γ ⇒ ∆, s◦[x/r] = s◦[x/s◦[x/r]]
Repr

2r = s◦[x/r], Γ ⇒ ∆, r = s◦[x/s◦[x/r]]

Case 2. r = s, Γ ⇒ ∆, P [x/r] is an instance of Ref. Then we have the following
subcases:

Case 2.1. The principal formula is in ∆. Then r = s, Γ ⇒ ∆, P [x/s] is also an
instance of Ref.

Case 2.2. The principal formula is P [x/r]. Then P [x/r] has the form t = t,
hence P has the form t◦ = t, or t = t◦ with t ≡ t◦[x/r]

Case 2.2.1. P ≡ t◦ = t. Then D is transformed into:

r = s, Γ ⇒ ∆, t◦[x/s] = t◦[x/s]
Repr

2r = s, Γ ⇒ ∆, t◦[x/s] = t

Case 2.2.2. P ≡ t = t◦. Then D is transformed into:

r = s, Γ ⇒ ∆, t◦[x/s] = t◦[x/s]
Repr

2r = s, Γ ⇒ ∆, t = t◦[x/s]
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If h(D) > 0 we distinguish the following cases:
Case 3. The last inference of the immediate subderivation of D is an Repr

2-
inference.

Case 3.1.

q = p, r = s, Γ ⇒ ∆′, Q[y/p], P [x/r]
Repr

2q = p, r = s, Γ ⇒ ∆′, Q[y/q], P [x/r]
q = p, r = s, Γ ⇒ ∆′, Q[y/q], P [x/s]

is transformed into:

q = p, r = s, Γ ⇒ ∆′, Q[y/p], P [x/r] ind
q = p, r = s, Γ ⇒ ∆′, Q[y/p], P [x/s]

Repr
2q = p, r = s, Γ ⇒ ∆′, Q[y/q], P [x/s]

Case 3.2.

q = p, r = s, Γ ⇒ ∆, P [y/p, x/r]
Repr

2q = p, r = s, Γ ⇒ ∆ P [y/q, x/r]
q = p, r = s, Γ ⇒ ∆, P [y/q, x/s]

is transformed into:

q = p, r = s, Γ ⇒ ∆, P [y/p, x/r] ind
q = p, r = s, Γ ⇒ ∆ P [y/p, x/s]

Repr
2q = p, r = s, Γ ⇒ ∆, P [y/q, x/s]

Case 3.3.

q◦[y/r] = p, r = s, Γ ⇒ ∆, P [x/p]
Repr

2q◦[y/r] = p, r = s, Γ ⇒ ∆, P [x/q◦[y/r]]
q◦[y/r] = p, r = s, Γ ⇒ ∆, P [x/q◦[y/s]]

is transformed into:

q◦[y/r] = p, r = s, Γ ⇒ ∆, P [x/p] LW
q◦[y/r] = p, q◦[y/s] = p, r = s, Γ ⇒ ∆, P [x/p]

Repr
2q◦[y/r] = p, q◦[y/s] = p, r = s, Γ ⇒ ∆, P [x/q◦[y/s]]

Repl+
2q◦[y/r] = p, r = s, Γ ⇒ ∆, P [x/q◦[y/s]]

Case 3.4.
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q = p, r◦[x/q] = s, Γ ⇒ ∆, P [x/r◦[y/p]]
Repr

2q = p, r◦[x/q] = s, Γ ⇒ ∆, P [x/r◦[y/q]]
q = p, r◦[x/q] = s, Γ ⇒ ∆, P [x/s]

is transformed into:

q = p, r◦[x/q] = s, Γ ⇒ ∆, P [x/r◦[y/p]] LW
q = p, r◦[x/q] = s, r◦[x/p] = s, Γ ⇒ ∆, P [x/r◦[y/p]] ind

q = p, r◦[x/q] = s, r◦[x/p] = s, Γ ⇒ ∆, P [x/s]
Repl+

2q = p, r◦[x/q] = s, Γ ⇒ ∆, P [x/s]

Case 4. The last inference of the immediate subderivation of D is an Repl+
2 -inference

acting on a formula Q that is not an equality, namely an Repl
2-inference.

q = p, r = s, Q[y/p], Γ′ ⇒ ∆, P [x/r]
Repl

2q = p, r = s, Q[y/q], Γ′ ⇒ ∆, P [x/r]
q = p, r = s, Q[y/q], Γ′ ⇒ ∆, P [x/s]

is transformed into:

q = p, r = s, Q[y/p], Γ′ ⇒ ∆, P [x/r] ind
q = p, r = s, Q[y/p], Γ′ ⇒ ∆, P [x/s]

Repl
2q = p, r = s, Q[y/q], Γ′ ⇒ ∆, P [x/s]

Case 5. The last inference of the immediate subderivation of D is a Repl+
2 -

inference acting on an equality E. In this case we can proceed as in Case 4, by
first inverting the last Repr

1- inference with the preceding Repl+
2 -inference and then

applying the induction hypothesis. 2

Theorem 17. The systems Rr
12 and Rrl+

2 are equivalent, hence the structural rules
are admissible in G3[mic]R

rl+
2 . The same holds for Rrl+

1 = {Ref, Repl+
1 , Repr

1}.

Proof Since, by the previous Proposition, Repr
1 is admissible in Rrl+

2 , Rr
12 is a

subsystem of Rrl+
2 . By Theorem 5 and Proposition 2 we have the converse inclusion.

2

Let Rrl
1 and Rrl

2 be { Ref, Repl
1, Repr

1} and {Ref, Repl
2, Repr

2} respectively.
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Proposition 18. Rrl+
1 and Rrl+

2 are equivalent to Rrl
1 + LC= and Rrl

2 + LC= re-
spectively.

Proof Repl+
1 and Repl+

2 are immediately derivable by means of LC= from Repl
1

and Repl
2 respectively. On the other hand LC= is admissible in both Rrl+

1 and Rrl+
2

by the previous Theorem. 2

This naturally leads to what we consider a quite significant problem left open
by our investigations:

Question Is it possible to extend Theorem 15 to languages endowed with func-
tion symbols, namely to replace Rrl+

2 by Rrl
2 in Theorem 17?

In the classical case, Proposition 17 yields that in the alternate tableau sys-
tem in [8] pg.294 it is possible to impose strictness, except that on equalities (and
γ-formulae of course), and at the same time restrict replacement to left-right re-
placement, provided it is allowed on all atomic and negation of atomic formulae.
In that framework the above question amounts to asking whether strictness can be
imposed also on equalities. It amounts also to asking whether in (≈) in [6], namely:

r ≈ s, Γ[x/r] ⇒ ∆[x/r]
r ≈ s, Γ[x/s] ⇒ ∆[x/s]

≈ can be replaced by =.

Remark In the semantic tableau method mentioned in the Introduction, in
which one can add identities at will and replacement is restricted to left-right re-
placement on atomic formule, it follows from the result in [14], that strictness can
be imposed on equalities as well.

6 Counterexamples
Since the weakening rules and the right contraction rule are admissible in all the
systems consisting of Ref and some of the equality rules, we will concentrate on the
possible failure of the left contraction LC and/or the Cut rule. By Proposition 2
and Theorem 5, all the axioms and rules for equality that we have considered are
admissible in Rr

12. Thus, by Corollary 3, to show that at least one among LC and
Cut is not admissible in a system S it suffices to find a sequent derivable in Rr

12
but not in S. A case of this kind in which LC is present, thus obviously admissible,
and, therefore, Cut is not admissible, is provided by S1 = {Ref, LC, Repl+

2 , Repr
1}.
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In fact for a, b and c distinct, the sequent a = c, b = c ⇒ a = b, which is derivable
in Rr

12, is not derivable in S1. As a matter of fact no sequent of the form

∗) a = c, . . . a = c, b = c, . . . , b = c, c = c, . . . , c = c ⇒ a = b

is derivable in S1, since it can be the conclusion of LC, Repl+
2 or Repr

1-inference
only if its premiss has already the form ∗) and no initial sequent or instance of
Ref has that form. Clearly the same holds if in S1, Repl+

2 is replaced by the more
extended rule Rep. A similar argument applies to S2 = {Ref, LC, Repl+

1 , Repr
2}

with respect to the sequent c = b, c = a ⇒ a = b which is derivable in Rr
12

but not in S2 and to the system obtained by replacing Repl+
1 by Rep′. While for

the above systems it is the admissibility of Cut that fails, {Ref, Cut, =1, =2} is a
system in which it is the admissibility of LC, actually of LC=, that fails, since,
a = f(a), a = f(a) ⇒ a = f(f(a)) is derivable, but a = f(a) ⇒ a = f(f(a))
is not. Another example of the same sort is provided by {Ref, Cut, CNG}, which
is easily seen to be equivalent to {Ref, Cut, =1, =2}. Although in general it may
happen for a rule not to be admissible in a system but admissible in a weaker one,
for the system we are considering, since the failure of the admissibility of some
of the structural rules is witnessed by the underivability of some sequent, which is
obviously preserved by weakening a system, if they are not all admissible in S and S ′

is a subsystem of S, then they are not all admissible in S ′ either. For example, since
{Ref, CNG} is a subsystem {Ref, Cut, CNG}, LC and Cut are not both admissible
also in {Ref, CNG}. Actually that is still a case in which it is LC to be not admissible,
since Cut remains admissible as it can be easily verified proceeding by induction on
the height of the derivation in {Ref, CNG} of its second premiss. But note that, by
4) in Proposition 2 and the analogue for Repr

2 in the proof of Theorem 5, it suffices
to add to {Ref, CNG} the left contraction rule restricted to equalities LC= to obtain
a system equivalent to Rr

12 and, therefore, the admissibility of both LC and Cut.

7 Semishortening derivations

Let us recall from [12] the following definition:

Definition 19. Let ≺ be any antisymmetric relation on terms. An application of
an equality rule with input term r and output term s is said to be nonlengthening
if s ̸≺ r and shorthening if r ≺ s. A derivation is said to be semishortening if all
its equality inferences with index 2 are nonlengthening and those with index 1 are
shortening.
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For languages without function symbols, the results in [12] apply to the present
context as well. In fact an easy modification of the proof of Lemma 11 and Lemma
12 combined with Lemma 13 establishes the following result:
Proposition 20. For languages without function symbols, if Γ ⇒ ∆ is derivable in
Rr

12, then Γ ⇒ ∆ has a semishortening derivation in Rrl
12.

We check in detail only part a) of the extension of Lemma 11 leaving the rest to
the reader.
Lemma 21. If γ(a, b) is a chain, then γ(a, b) ⇒ a = b has a semishortening deriva-
tion in Rrl

12.
Proof As in the proof of Lemma 11. assuming γ(a, b) is a ≈ a1, a1 ≈ a2, . . . ,

an−2 ≈ an−1, an−1 ≈ b. we proceed by induction on its length n. For n = 0, the
only change occurs if γ(a, b) = {b = a}. If so, we distinguish two cases displaying
the corresponding semishortening derivation claimed to exist:

Case 1 b ≺ a.

b = a ⇒ b = b
Repr

1b = a ⇒ a = b

Case 2 b ̸≺ a.

b = a ⇒ a = a
Repr

2b = a ⇒ a = b

As for the induction step, let us assume that |γ(a, b)| = n > 1 so that γ(a, b) is
of the form:

a ≈ a1, . . . , an−2 ≈ an−1, an−1 ≈ b

If an−1 ≈ b is an−1 = b we distinguish two cases:

Case 1 an−1 ≺ b. By induction hypothesis in Rrl
12 there is a semishortening

derivation D of:

a ≈ a1, . . . , an−2 ≈ an−1 ⇒ a = an−1

Then the following is a semishortening derivation of γ(a, b) ⇒ a = b:
D

a ≈ a1, . . . , an−2 ≈ an−1 ⇒ a = an−1 LW
a ≈ a1, . . . , an−2 ≈ an−1, an−1 = b ⇒ a = an−1 Repr

1a ≈ a1, . . . , an−2 ≈ an−1, an−1 = b ⇒ a = b
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Case 2 an−1 ̸≺ b. By induction hypothesis in Rrl
12 there is a semishortening

derivation D of:

a ≈ a1, . . . , an−2 ≈ b ⇒ a = b

Then the following is a semishortening derivation of γ(a, b) ⇒ a = b:

D
a ≈ a1, . . . , an−2 ≈ b ⇒ a = b LW

a ≈ a1, . . . , an−2 ≈ b, an−1 = b ⇒ a = b
Repr

2a ≈ a1, . . . , an−2 ≈ an−1, an−1 = b ⇒ a = b

If an−1 ≈ b is b = an−1 the proof is analogous. 2

On the other hand, for languages with function symbols, the result holds provided
Rrl

12 is strengthened into Rrl+
12 .

Proposition 22. If Γ ⇒ ∆ is derivable in Rr
12, then Γ ⇒ ∆ has a semishortening

derivation in Rrl+
12 .

Proof It suffices to show that Repr
1 and Repr

2 are admissible in the calculus
Rrl+

12≺, namely Rrl+
12 with the applications of Repl+

1 and Repr
1 required to be short-

ening, denoted by Repl+
1≺ and Repr

1≺, and the applications of Repl+
2 and Repr

2 to be
nonlengthening, denoted by Repl+

2≺ and Repr
2≺.

We proceed by induction on the height of a derivation in Rrl+
12≺ of the premiss of

a non shortening Repr
1-inference or of a lenghtening Repr

2-inference.
As for a non shortening Repr

1-inference, if the derivation of the premiss is an
initial sequent or an instance of Ref or ends with a Repr

2≺ or a Repl+
2≺ we apply the

same transformations used in the proof of Proposition 16. Inspection of the various
cases reveals that in the transformed derivation, the given non shortening Repr

1-
inference is replaced by a Repl

2-inference that, having the same operating equality,
turns out to be non lenghtening. Furthermore if the derivation of the premiss ends
with a Repr

1≺ or a Repl+
1≺-inference we can perform similar tranformations leading

to a derivation in Rrl+
12≺ of the conclusion. The case of a lengthening Repr

2-inference
is dealt with in a similar way. We leave the details to the reader. 2

Theorem 23. The systems Rr
12 and Rrl+

12≺ are equivalent, hence the structural rules
are admissible in G3[mic]R

rl+
12≺.

Proof By the previous Proposition, Rr
12 is a subsystem of Rrl+

2 . The conclusion
follows by Theorem 5 and Proposition 2 2
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The proof of Proposition 22 uses the strengthened form Repl+
1 , Repl+

2 of the rules
Repl

1, Repl
2. However we have no counterexample, i.e. no particular ≺, showing that

Proposition 22 does not hold for Rrl
12≺, in particular, according to the problem at

the end of Section 7, since Rrl+
12∅ amounts to the same as Rrl+

2 , we do not have one
for ≺= ∅.

Note In case ≺ is the relation induced by rank-comparison i.e. if r ≺ s if and
only if the height (of the formation tree) of r is smaller than that of s, the derivability
in Rrl

12≺ is closely related to the notion of a sequent being directly demonstrable as
defined in [10], pg.90.

8 Conclusion

We have shown how the Gentzen’s sequent calculi for first order logic with equal-
ity studied in [12] naturally evolve into their structural free counterparts based on
Dragalin’s multisuccedent calculi for minimal, intuitionistic and classical logic. We
have shown that various restrictions limiting the scope of the replacement in the
equality rules are possible. In the classical case all such results ensure the pos-
sibility of placing corresponding restrictions on the semantic tableau method for
first order logic with equality. A particularly significant result is the possibility of
imposing strictness as well as orientation of the replacement of equals in case the
language lacks function symbols. On the way of extending this orientability with
strictness result to general languages we have shown its reducibility to the admissi-
bility of the Left Contraction Rule for equalities. Whether or not orientability can
be obtained without adding such a contraction rule remains an open problem to be
settled. Furthermore we have discussed to what extent the results in [12] concerning
semishortening derivations can be extended to the present context leaving open a
problem that includes the previous one as a particular case. While for languages
with function symbols the question of the orientability of the replacement, the lack of
which is a cause inefficiency of the tableau method for first order logic with equality,
remains open, the refinements including strictness that we have provided naturally
calls for their implementation. For that, to start with one can follow the lines of [8]
which uses the free- variable tableau method to deal with the γ and δ- reductions.
In that direction it would be interesting to investigate whether one can put more
severe restrictions than the usual one adopted in [10] for the choice of terms to be
used in the γ-expansions. Once such implementation are defined the comparison
with other approaches such as those in [15], [4], [2] and [5] is naturally in order.
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Of special interest should be the investigation of the result we have obtained in the
intuitionistic case, expecially in connection with the treatment in [17]. The present
work sets the theoretical ground for further more computationally oriented work
along such lines.
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