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Abstract

This paper introduces a system of deontic logic based on the idea that obligations
are grounded on reasons. A reason-based deontic system is worth considering for at
least three reasons: it may shed light on the way in which obligations are generated;
it allows us to cope with conflicts between reasons while avoiding conflicts between
obligations; finally, it may help us to assess the question as to whether standard
deontic logic is appropriate to model basic deontic reasoning. The system I propose
is developed in a framework that combines standard and neighborhood semantics and
it is proved to be sufficiently powerful to represent ordinary deontic reasoning and to
successfully address some significant problems in deontic logic.
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1 Introduction

The aim of this paper is to develop a modal system of deontic logic based on
the idea that consistent obligations are grounded on possibly inconsistent rea-
sons. 1 This project, whose significance is due to the prominent role currently
attributed to reasons in the study of normative concepts and normative sys-
tems, 2 has to address two general issues: (i) from the philosophical side, to
devise what basic principles about reasons are to be assumed to deduce consis-
tent oughts without incurring in counter-intuitive consequences; (ii) from the
logical side, to construct a system of deontic logic characterized by those prin-
ciples in a suitable semantic framework. These issues are taken into account
in the following three sections. In section 2 the basic principles underlying the
system are proposed, as emerging from the recent debate on the connections
between reasons and obligations. In section 3, after having characterized the
system both from a semantic and from an axiomatic point of view, it is shown
that it can be exploited to solve some interesting deontic problems and that it

1 The notions of reason and obligation we will cope with are the notions of pro tanto objective
normative reason and pro toto objective normative obligation [7, ch.1 and ch.4].
2 See [7], [19, part I], [20, ch.1], [21, ch.4], and [22, ch.4] for extensive and insightful presen-
tations of the topic. See [25, especially part III and V] for an up-to-date discussion of the
structure and the role played by reasons in practical argumentation and deliberation.



2 Reason-based Deontic Logic

enables us to vindicate standard deontic logic as the logic of basic deontic rea-
soning. In the final section two recent accounts, similar in scope, are considered
and compared with the present one, and it is shown that the basic intuitions
on which those accounts rely can be appropriately interpreted in it.

2 Intuitive principles

We want to be able to capture basic forms of deontic reasoning involving connec-
tions between reasons and obligations. In this respect, two inference schemata
are considered as highly desirable in the literature [11,16,17]: a schema for im-
plicative reasoning (IR) and a schema for disjunctive reasoning (DR). These
schemata can be shown to be valid if we assume two intuitive principles con-
cerning why certain reasons follow from the presence of other reasons, namely
Consistent Closure and Consistent Conjunction. However, the assumption of
these principles generates a problem of deontic explosion. What we want is
then a system of deontic logic enabling us both to derive IR and DR, given
an appropriate interpretation of Consistent Closure and Consistent Conjunc-
tion, and to avoid undesired consequences. 3 The idea underlying the system
here developed is that obligations are based on reasons and reasons are dis-
tinguished into three kinds: basic reasons, which are the central elements of
deontic reasoning; combined reasons, which allow for a principle of Consis-
tent Conjunction, but are not closed under consistent closure; and derivative
reasons, which allow for a principle of Consistent Closure, but are not closed
under consistent conjunction. As we will see, in such system, besides solving
paradigmatic cases of deontic dilemmas, we can derive specific versions of IR
and DR (theorem 3.15 below), while avoiding explosions (theorem 3.13 below).

Let us begin with presenting IR and DR. Let a be a generic agent.

(i) Implicative reasoning (IR):
(a) it is obligatory for a to do φ;
(b) φ entails ψ;
(c) therefore, a has a reason to do ψ.

(ii) Disjunctive reasoning (DR):
(a) it is obligatory to do φ ∨ ψ;
(b) a has a reason to do ¬φ;
(c) therefore, a has a reason to do ψ.

Both kinds of reasoning are acceptable, provided we assume that obligations are
based on reasons and that some intuitive closure principles concerning reasons
are logically valid. Specifically, as to IR, suppose that obligations are based
on reasons and that it is obligatory for a to do φ; then a has a reason to do φ;
thus, if having a reason to do φ implies having a reason to do all that φ entails,
then a has a reason to do ψ. Similarly, as to DR, suppose that obligations are
based on reasons and that it is obligatory for a to do φ∨ψ; then a has a reason

3 See [16] for an exposition of the current debate and an analysis of the analogies between
cases of conflicting reasons and cases of conflicting obligations.
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to do φ ∨ ψ; thus, if a has a reason to do ¬φ and having reasons to do two
conjuncts implies having a reason to do the conjunction, then a has a reason
to do (φ ∨ ψ) ∧ ¬φ; hence, if having a reason to do something entails having a
reason to do all that is entailed by that thing, a has a reason to do ψ. In sum,
if we allow for principles like:

(Closure) if ψ is a necessary condition of φ, then having a reason to do φ
implies having a reason to do ψ;

(Conjunction) having a reason to do φ and having a reason to do ψ implies
having a reason to do φ ∧ ψ;

then we are able to account for the validity of IR and DR. Besides, as
we can check by analyzing the arguments just proposed, both schemata are
derivable from the following conditioned versions of Closure and Conjunction:

(Consistent Closure) if φ is possible and ψ is a necessary condition of φ,
then having a reason to do φ implies having a reason to do ψ;

(Consistent Conjunction) having a reason to do φ and having a reason to
do ψ implies having a reason to do φ ∧ ψ, if it is possible to do φ ∧ ψ.

Hence, IR and DR turn out to hold under very mild assumptions.

2.1 Problems

When considering the consequences of adopting IR and DR, we encounter
two basic problems [11]. The first and lighter one is that, under the intuitive
assumption that reasons can conflict and that there is no reason for doing
something impossible, Conjunction is untenable. To be sure, it is impossible
to allow for conflicts of reasons, since having a reason for φ and a reason for
¬φ would immediately entail having a reason for φ∧¬φ. Thus, Conjunction is
to be abandoned. The second problem is more pressing. Suppose that we have
a reason to do φ and a reason to do ¬φ, and that both φ and ¬φ are possible.
Suppose also that something, say doing ψ, does not entail doing φ, so that we
can do ψ without doing φ. Since φ entails φ∨ψ, we have a reason to do φ∨ψ,
by Consistent Closure. Since it is possible to do ¬φ ∧ ψ, it is also possible to
do ¬φ∧ (φ∨ψ), by propositional logic. Hence, by Consistent Conjunction, we
have a reason to do ¬φ ∧ (φ ∨ ψ). Still, ¬φ ∧ (φ ∨ ψ) entails ψ, and so, by
Consistent Closure we have a reason to do ψ. Thus, assuming that reasons can
conflict, these two principles allow us to derive the following

Principle of Explosion. If we have conflicting reasons, then we have reasons
to do anything independent of the content of the conflict.

The key problem to be addressed, in a framework allowing for rules corre-
sponding to IR and DR, is then the following

Problem of Explosion. If we have conflicting reasons, how to avoid that
anything independent of the content of the conflict be supported by a reason.
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2.2 Strategies of solution

In light of the current debate on conflicts in deontic logic and the logic of
reasons, two main strategies can be pursued in order to solve this problem. 4

According to the first one, we can put into question the validity of Consistent
Closure and adopt a more limited principle to the effect that, if ψ is a necessary
condition of φ, then having a reason to do φ entails having a reason to do ψ
provided that we have no reason to avoid to do φ. It is not difficult to see that
limiting the application of Consistent Closure this way blocks the possibility of
inferring that we have a reason to do φ∨ψ if we have a reason to do φ since, in
the case we have considered, we also have a reason to do ¬φ. According to the
second strategy, we can put into question the validity of Consistent Conjunction
and limit the application of the principle to a certain class of reasons, typically
basic reasons, thus blocking the possibility of inferring that we have a reason
to do ¬φ∧ (φ∨ψ) if we have a reason to do ¬φ and a reason to do φ∨ψ, given
that having a reason to do φ ∨ ψ derives from having a reason to do φ. While
both strategies are effective in preventing the derivation of explosions, the first
one can do that only at a high cost, due to the fact that it prevents us from
deriving that we have a reason to do φ ∨ ψ if we have a reason to do φ and a
reason to do ψ. To be sure, when we have a reason to do φ and a reason to do
ψ, we would like to accept that we also have a reason to do one of φ and ψ,
even though φ and ψ cannot be done together. 5

The system we are going to introduce is designed, among other things, to
allow for rules like IR and DR and to provide a solution to the problem of
explosion along the lines of the second strategy.

3 A system of reason-based deontic logic

In this section system RDL of reason-based deontic logic is introduced. Its
language should be rich enough to describe different ways of operating with
reasons. In particular, when arguing about what to do, we typically combine
reasons and infer the existence of reasons from the presence of other reasons.
Then, if we become aware that some reasons generate conflicts, we select the
strongest ones, or the ones that seem to be the strongest in the circumstances,
and combine them to identify a definite course of action. In addition, when
assessing our actions, we discern things which are done for a reason and things
done without reason. To take into account these distinctions, modal operators
are introduced for saying that a reason to do something is basic (RB), obtained
by aggregation (RC), by derivation (RD), or by aggregating selected reasons
(SC). Furthermore, I introduce two modal operators for saying that something
which is the case is supported by a reason (R) or by a selected reason (S).
Finally, two deontic operators are considered, for obligations based on generic
reasons (OR) and obligations based on selected reasons (OS).

4 See [17] and [10,11,12] for comprehensive presentations.
5 This point is cogently defended in [6,13,14,16,17].
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Definition 3.1 The language LRDL of RDL is based on a set {pi}i∈N of propo-
sitional variables and is defined according to the following rules.

φ ::= pi | ¬φ | φ ∧ φ | �φ | RBφ | RCφ | RDφ | Rφ | ORφ | Sφ | SCφ | OSφ

LRDL is a powerful language. This notwithstanding it can be interpreted
in a very intuitive fashion on the basis of appropriate modal frames. Let us
first present the intended meaning of the modal formulas. �φ states that φ is
an unavoidable state of affairs under the circumstances. RBφ states that there
is a basic reason to do φ. The notion of basic reason is here introduced as a
primitive notion. 6 RCφ states that there is a combined reason to do φ, i.e.,
that φ is supported by a set of basic reasons opportunely combined, while RDφ
states that there is a derivative reason to do φ, i.e., that φ is a consequence of
something that is supported by a set of basic reasons opportunely combined.
Rφ states that φ is the case in accordance with a reason, i.e., in typical cases,
that the agent has seen to it that φ based on a certain reason. SCφ states
that there is a strong combined reason to do φ, viewed as a reason that has
passed a process of deliberation and selection run by the agent under specific
circumstances, and Sφ states that φ is the case in accordance with a strong
reason. Finally, a formula like ORφ states that φ is obligatory given the set of
available reasons, while OSφ states that φ is obligatory given the set of available
strong reasons. I will refer to ORφ and OSφ as reason-based obligations.

Remark 3.2 Intuitively, we can use RB RC, RD to model different kinds of
pro tanto practical reason, OR to model the notion of pro toto practical reason
and OS to model the notion of pro toto or all things considered obligation.

3.1 Semantics

The semantics for RDL builds on suitable combinations of neighborhood and
standard semantics recently proposed in epistemic logic 7 and incorporates both
a distinction between non-derivative and derivative reasons and a distinction
between reasons and strong reasons. 8

6 This notion is widely used in epistemology, where a basic reason is associated with a basic
source of justification, as acknowledged by standard foundationalist accounts. See [9] for
an introduction and [1, ch.1 and ch.3] for further discussion. It is also becoming popular in
ethics, where it parallels the notion of basic obligation: in some approaches, basic reasons are
assumed to be primitive [7,16,21,22]; in others they are identified either with basic intrinsic
desires and values [2] or with propositions constituting the antecedents of basic rules of action.
In particular, the last interpretation is consistent both with the approach proposed in [21]
and with the one developed in [13,14].
7 Specifically, these semantics are used in evidence-based epistemic logic [26,27,28] and topo-
logical epistemic logic [3,4,5]. See [8,18] for an introduction to neighborhood semantics.
8 The distinction between non-derivative and derivative reasons is the key element that
will allow us to separate Closure, which is valid with respect to derivative reasons, from
Consistent Conjunction, which is valid with respect to non-derivative combined reasons. A
strategy based on this distinction is pursued in [16] to address the problem of explosion
relative to reasons. The distinction between reasons and strong reasons is a version of the
distinction between defeasible and defeasible but undefeated reasons [12,13,14].
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Definition 3.3 A frame for LRDL is a tuple (W,R,R+,S+), where
R,R+,S+ ⊆ ℘(W ) and W , R, R+, S+ satisfy the following conditions

1. ∅ 6= W ;
2. W ∈ R;
3. R ⊆ R+;
4. if X ∈ R+, then X 6= ∅;
5. if X ∈ R+ and Y ∈ R+ and X ∩ Y 6= ∅, then X ∩ Y ∈ R+;
6. if r(P ) 6= ∅, then r(P ) ∈ R+, where r(P ) =

⋃
{X ∈ R+ : X ⊆ P};

7. if X ∈ S+ and Y ∈ S+ and X ∩ Y 6= ∅, then X ∩ Y ∈ S+;
8. if s(P ) 6= ∅, then s(P ) ∈ S+, where s(P ) =

⋃
{X ∈ S+ : X ⊆ P};

9. W ∈ S+ ⊆ R+.

In light of conditions 5, 6, we say that R+ is closed under consistent aggre-
gation and conditioned addition. Let us comment on these elements in turn.

W is a set of states, viewed as the set of scenarios that are consistent with
the background situation in which an agent is located, that is the set of scenarios
that are possible given what is settled in the background. Condition 1 ensures
that the background itself is consistent, so that there are indeed possible states.

R is a set of elements related to the basic reasons of an agent. In this
framework R is sufficiently abstract to allow for different interpretations. In
more detail, R can be interpreted in at least two different ways.

(i) As a set of objectives identified with the agent’s basic reasons. The intuitive
sense of X ∈ R is then that X is a basic reason viewed as an intrinsic value
to be realized, so that X is the set of states where that value is actually
realized. Accordingly, the interpretation of X ⊆ P is that P is implied by
one of the agent’s basic reasons.

(ii) As a set of propositions supported by the agent’s basic reasons. The intu-
itive sense of X ∈ R is then that there is a basic reason to do X, so that X
is a proposition supported by the agent’s basic reasons. Accordingly, the
interpretation of X ⊆ P is that P is indirectly supported by the agent’s
basic reasons, being entailed by X, which is directly supported by them.

Here I assume the second interpretation, under the general proviso that having
a reason to do something, say P , is to be understood as having a reason (i) to
do P , if P is not settled given the background and not realized, (ii) to preserve
P , if P is not settled but realized, or (iii) to take P into account, if P is settled
given the background. Hence, in light of (iii), condition 2, stating that W is
in R, captures the intuitive principle that an agent has always to take into
account what is settled given the background.

R+ is the set of propositions supported by the combined reasons available
to an agent, that is the set containing the propositions that an agent can sup-
port by combining basic reasons. Condition 3 states that R is a subset of R+,
which corresponds to the requirement that taking a reason as it stands is a way
of combining reasons. Condition 4 states that propositions supported by com-
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bined reasons, and so also by basic reasons, are consistent. The underlying idea
is that an agent is able to combine reasons in a consistent way, and so that no
combination of basic reasons supports a contradiction. Crucially, the fact that
combined reasons are consistent in themselves does not exclude the possibility
of conflicting reasons, that is of reasons supporting inconsistent propositions.
To be sure, the fact that X ∈ R+ implies X 6= ∅ does not exclude the pos-
sibility that, for some X,Y ∈ R+, X ∩ Y = ∅; what is excluded is only that
X∩Y can be supported by a combined reasons, i.e., that X∩Y ∈ R+. Finally,
conditions 5 and 6 specify what kinds of operation of combination are avail-
able to an agent. Condition 5 underpins a principle of consistent conjunction.
Indeed, this condition allows for operations of consistent aggregation, on the
basis of which reasons that support two mutually consistent propositions are
aggregated into a reason supporting their conjunction. Condition 6 allows for
operations of conditioned addition, on the basis of which all the reasons sup-
porting propositions that entail a proposition P can be added to obtain a new
reason, which is in fact the most stable reason that supports P . Indeed, r(P )
is the union of all propositions that entail P and that are supported by some
available reasons. Therefore, all the reasons supporting r(P ) provide support
for propositions that are stronger than P , and so are less stable, being reasons
that can be attacked with less difficulty.

Remark 3.4 I will refer to R+ as the set of all reasons and to S+ as the set
of all strong reasons, thus identifying the concepts of reason and strong reason
with the concept of combined reason and combined strong reason.

Finally, S+ is the set of propositions supported by the strong combined reasons
available to an agent. Conditions 7 and 8 are analogous to the corresponding
conditions onR+ and ensure that the operations of composition available to the
agent are operative with respect to the reasons in S+ as well. Condition 9 states
that S+ is a subset of R+, which follows from the definition of S+, and that W
is in S+, which is intuitive given the characterization of the notion of reason.
The idea behind the introduction of S+ is that, given a certain background
and a certain set of initial reasons, and given the possibility of conflicts, an
agent has to weigh up the reasons that are stronger under the circumstances
and arrive at a decision based on them. In this respect, note that the present
framework is not committed to a specific procedure for weighing reasons, since
what is important for our purposes is just the outcome of the process, that is
the set of reasons that are eventually selected.

Definition 3.5 A model for LRDL is a tuple M = (W,R,R+,S+, V ), where
(W,R,R+,S+) is a frame for LRDL and V : {pi}i∈N → ℘(W ) is a modal
valuation assigning propositions to propositional variables.

The notion of truth is defined as follows.

Definition 3.6 Let M = (W,R,R+,S+, V ) be a model for LRDL. The truth
of φ at a world w ∈W in M is defined through the following conditions, where
[φ]M = {w : M,w |= φ}.
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M,w |= pi ⇔ w ∈ V (pi)
M,w |= ¬φ⇔M,w 6|= φ
M,w |= φ ∧ ψ ⇔M,w |= φ and M,w |= ψ
M,w |= �φ⇔ [φ]M = W
M,w |= RBφ⇔ [φ]M ∈ R
M,w |= RCφ⇔ [φ]M ∈ R+

M,w |= RDφ⇔ ∃X ∈ R+(X ⊆ [φ]M )
M,w |= Rφ⇔ w ∈ r([φ]M )
M,w |= ORφ⇔ ∀X ∈ R+∃Y ∈ R+(Y ⊆ X ∩ [φ]M )
M,w |= SCφ⇔ [φ]M ∈ S+
M,w |= Sφ⇔ w ∈ s([φ]M )
M,w |= OSφ⇔ ∀X ∈ S+∃Y ∈ S+(Y ⊆ X ∩ [φ]M )

The notion of logical consequence is defined as usual. So, ∆ RDL φ iff
M,w |= ∆ entails M,w |= φ for all w ∈W and models M for LRDL.

Definition 3.7 RDL is the logic of the class of models for LRDL.

The truth conditions reflect the intended meaning of the modal formulas.
As expected, �φ is true just in case φ is true at all the states in W , RBφ is true
just in case φ is supported by a basic reason in R, and RCφ is true just in case
φ is supported by a combined reason in R+. As to RD, the definition clarifies
the distinction between non-derivative and derivative reasons in terms of the
distinction between directly and indirectly supported propositions. 9 Thus,
RDφ is true iff φ is supported by a derivative reason, i.e., iff φ is entailed by a
proposition supported by a non-derivative reason in R+, i.e., iff φ is indirectly
supported by a non-derivative reason in R+. Rφ is true just in case φ is true in
a state in which what is supported by the most stable reason for φ is realized.
Therefore, φ is the case and that φ is the case is in accordance with a reason,
since φ is supported by its most stable reason. Similarly, Sφ is true just in
case φ is true in a state in which what is supported by the most stable strong
reason for φ is realized, while SCφ is true just in case φ is supported by a strong
combined reason in S+. Lastly, ORφ is true just in case every reason in R+

can be strengthened to a reason for φ. Hence, being obligatory given the whole
set of available reasons is interpreted as being supported in a set of reasons
that do not conflict on what is obligatory. 10 Similarly, OSφ is true just in case
every reason in S+ can be strengthened to a strong reason for φ.

It is worth noting that RDL models are generalizations of uniform models
in standard deontic logic, that is models of the form (W, Ideal). Indeed, let
M = (W,R,R+,S+, V ) be such that R = R+ = S+ = {W, Ideal}, where
∅ 6= Ideal ⊆ W . Then Ideal ⊆ [φ]M iff ∀X ∈ S+∃Y ∈ S+(Y ⊆ X ∩ [φ]M ).

9 In accordance with this definition, both basic and combined reasons count as non-derivative
reasons, since both provide direct support to a proposition.
10 It is not difficult to see that ∀X ∈ R+∃Y ∈ R+(Y ⊆ X ∩ [φ]M ) if and only if ∀X ∈
R+∃Y ∈ R+(Y ∩ X 6= ∅ and Y ⊆ [φ]M ). Thus, every reason in R is consistent with a
reason for φ, and so φ is supported by reasons that are not in conflict relative to φ itself.
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Thus, uniform standard deontic logic can be viewed as the logic determined by
the class of models like M , where the standard notion of obligation is captured
by OS or, equivalently, by OR. The underlying assumption in this case is that
there is only one normative reason to be considered, namely the reason that is
encoded in a consistent deontic code.

3.2 All things considered obligations

A standard approach for generating all things considered obligations from a set
of available reasons has it that φ is obligatory when there is a good reason to
perform φ, where the notion of good reason is defined in terms of an ordering
relation on the set of reasons. 11 As an alternative, in line with the approach
developed in [3,4,5,26,27,28], we may assume that it is obligatory to do φ when
every reason can be strengthened to a reason for φ, that is when every reason is
part of a set of reasons supporting φ. If every available reason can be strength-
ened to a reason for φ, then no available reason for φ can be outweighed by
a stronger reason, and so the second approach is stricter than the first and
generates less obligations. The approach I propose here is a combination of the
ones just sketched and can be divided into two ideal stages. Suppose an agent
is confronted with a deontic problem, e.g. whether she should do p. In the
first stage, the agent implements the first approach by selecting within the set
R+ of available reasons the set S+ of strong reasons, to be identified with the
good reasons obtained after a process of deliberation. In the second stage, she
checks whether every reason in S+ can be strengthened to a reason for p. If
so, then she concludes that p is all things considered obligatory. Here, S+ can
be thought of as generated from R+ by virtue of a suitable choice function,
along the lines originally proposed in [23,24]. The reason why this procedure is
adopted, instead of introducing an ordering relation on R+, is that it provides
us with a more flexible device for modeling the outcome of a process of delib-
eration. In a more general setting, this approach can be developed in such a
way that a set of triggered reasons T +

w = τ(w) ⊆ R+ is assigned to each state
w by a specific function τ , and then a set of strong reasons S+w = σ(w) ⊆ T +

w

is selected by σ. In such a setting, various σs can be defined based on different
properties of a choice function and the connections between the corresponding
notions of all things considered obligation can be explored.

3.3 Axiomatization

Let us consider the following groups of axioms and rules.

Group 1: KT5 axioms and rules for �.

Group 2: KT axioms and rules for R and S.

11This approach can be implemented in different ways. A common option is to assume that
there is a good reason to perform φ iff there is an undefeated reason for φ, i.e., iff there is a
reason for φ and there is no stronger reason, given the ordering, against the performance of
φ. A more sophisticated option, which incorporates the notion of undefeated reasons, is put
forward in [13,14]. Section 4.2 gives a hint of how this option can be handled in RDL.
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Group 3: minimal axioms for RB, RC, SC, RD.

BN: �(φ↔ ψ) ∧ RBφ→ RBψ Consistent conjunction for RC and SC:
RN: �(φ↔ ψ) ∧ RCφ→ RCψ RC: RCφ ∧ RCψ ∧ ♦(φ ∧ ψ) → RC(φ ∧ ψ)
SN: �(φ↔ ψ) ∧ SCφ→ SCψ SC: SCφ ∧ SCψ ∧ ♦(φ ∧ ψ) → SC(φ ∧ ψ)
DN: �(φ→ ψ) ∧ RDφ→ RDψ

Group 4: inclusions between modalities.

B1: RBφ→ �RBφ
B2: �φ→ RBφ

R1: RCφ→ �RCφ S1: SCφ→ �SCφ I1: Sφ→ Rφ
R2: �φ→ RCφ S2: �φ→ SCφ I2: SCφ→ RCφ
R3: RCφ ∧ φ→ Rφ S3: SCφ ∧ φ→ Sφ I3: RBφ→ RCφ
R4: ♦Rφ→ RCRφ S4: ♦Sφ→ SCSφ I4: RCφ→ RDφ
R5: ORφ↔ �¬R¬Rφ S5: OSφ↔ �¬S¬Sφ I5: RDφ↔ ♦Rφ

Theorem 3.8 Axioms and rules in groups 1 – 5 are sound and complete with
respect to the class of all models for LRDL.

The proof is rather long and is presented in the extended version of the paper.

Fact 3.9 ORφ→ RDφ and OSφ→ RDφ.

It follows from R5 and S5 by factivity of R and S, the logic of �, I5 and I1.

Fact 3.10 RC is not closed under necessary implication.

To provide a counter-model for �(φ → ψ) ∧ RCφ → RCψ let M be such that
W = {w1, w2, w3}, R = R+ = S+ = {W, {w1}}, V (p1) = {w1} and V (p2) =
{w2}. Then, for all w ∈ W , M,w |= �(p1 → p1 ∨ p2), by the truth conditions
of �, and M,w |= RCp1, since [p1]M = {w1} ∈ R+. Still, M,w |= RC(p1 ∨ p2)
for no w ∈W , since {w1, w2} /∈ R+.

Fact 3.11 RD is not closed under consistent conjunction.

To provide a counter-model for RDφ∧RDψ∧♦(φ∧ψ)→ RD(φ∧ψ) let M be such
that W = {w1, w2, w3}, R = R+ = S+ = {W, {w1}, {w2, w3}}, V (p1) = {w1}
and V (p2) = {w2}. Then, for all w ∈ W , M,w |= RC(p1 ∨ p2), since [p1]M =
{w1} ∈ R+ and [p1]M ⊆ [p1 ∨ p2]M , and M,w |= RD¬p1, since [¬p1]M =
{w2, w3} ∈ R+ and M,w |= ♦((p1∨p2)∧¬p1), since [(p1∨p2)∧¬p1]M = {w2}.
Still, M,w |= RD((p1 ∨ p2) ∧ ¬p1), for no w ∈W : X ⊆ {w2} for no X ∈ R+.

Fact 3.12 Basic reasons do not entail obligations.

To provide a counter-model for RBφ→ ORφ let M be such that W = {w1, w2},
R = R+ = S+ = {W, {w1}, {w2}}, V (p1) = {w1}. Then, for all w ∈ W ,
M,w |= RBp1, since [p1]M = {w1} ∈ R. Still, M,w |= ORp1 for no w ∈ W ,
since there is no Y ∈ R+ such that Y ⊆ {w2} ∩ [φ], given that {w2} ∩ [φ] = ∅.

By I3 and I4 we obtain that neither derivative nor non-derivative reasons
entail obligations. Furthermore, in accordance with the intuitive interpretation
given in remark 3.2, we conclude that pro tanto obligations do not entail pro
toto obligations, as it should be.
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3.4 Solving a paradigmatic dilemma

In order to show how deontic reasoning is modeled in the present framework
let us provide a solution to two versions of a paradigmatic dilemma.

Alice promised both Bob and Carl that she would dine with them. The
promises are equally important, but she prefer not to dine with them to-
gether, given that Bob doesn’t like Carl.

In the first version Alice has no particular preference, while in the second
version she would prefer to dine with Bob, since she is interested in him. In-
tuitively, we would like to derive that, in the first version, Alice ought to dine
with one of them and that, in the second version, she ought to dine with Bob.

Model 1 W = {w1, w2, w3}, R = {W, {w1, w2}, {w1, w3}, {w2, w3}}, R+ =
S+ = ℘(W ) − {∅}. Set V (p1) = {w1, w2} and V (p2) = {w2, w3}, where p1
stands for dining with Bob and p2 stands for dining with Carl.

Model 1: only reasons different from W are represented

S+

R

R+

p1 ¬(p1 ∧ p2) p2

p1 ∧ ¬p2 p1 ∧ p2 ¬p1 ∧ p2

There is a reason for dining with Bob and a reason for dining with Carl,
but there is no obligation for dining with one of them in particular, or with
both, since the reasons in R+ cannot be strengthened to a reason for one of
p1 ∧¬p2, p1 ∧ p2, ¬p1 ∧ p2. Still, there is an obligation to do p1 ∨ p2, since any
reason in S+ = R+ can be strengthened to a reason for doing p1 ∨ p2.

Model 2 Let M be as before except that S+ = {W, {w1, w2}, {w1, w3}, {w1}}.

Model 2: only reasons different from W are represented

S+

R

R+

p1 ¬(p1 ∧ p2) p2

p1 ∧ ¬p2 p1 ∧ p2 ¬p1 ∧ p2
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Again, there is a reason for dining with Bob and a reason for dining with
Carl, but now there is an obligation to dine with Bob, since any reason in S+
can be strengthened to a reason for doing p1 ∧ ¬p2, which is {w1}.

3.5 Solving the problem of explosion

The present framework allows for a solution of the problem of explosion based
on the distinction between non-derivative and derivative reasons. 12 In partic-
ular, in our system we can prove that there is no valid principle of explosion of
the following form, where C(φ1, φ2) stand for RBφ1 ∧ RBφ2 ∧ ¬♦(φ1 ∧ φ2) 13

E1: RBφ ∧ RB¬φ→ RDψ GE1: C(φ1, φ2)→ RDψ
E2: RBφ ∧ RB¬φ ∧ ♦ψ → RDψ GE2: C(φ1, φ2) ∧ ♦ψ → RDψ
E3: RBφ ∧ RB¬φ ∧ ¬RD¬ψ → RDψ GE3: C(φ1, φ2) ∧ ¬RD¬ψ → RDψ

E2 entails E1, by propositional logic, and E3 entails E2, since ♦ψ follows
from ¬RD¬ψ, by B2, I3, I4. In addition, the invalidity of the basic principles
Ei entails the invalidity of the corresponding generalized principles GEi, and
therefore it is sufficient to prove the following

Theorem 3.13 RDψ is not a logical consequence of {RBφ,RB¬φ,¬RD¬ψ}.
Hence, basic reasons can conflict without implying that anything independent
of the content of the conflict be supported by a reason.

Let W = {w1, w2, w3, w4}, R = R+ = S+ = {W, {w1, w2}, {w3, w4}}. Set
V (p1) = {w1, w2} and V (p2) = {w1, w3}, so that p2 is independent of the
content of p1. Then, for all w ∈ W , M,w |= RBp1 ∧ RB¬p1, by the definition
of truth, and M,w |= ¬RD¬p2, since X ∩ [p2]M 6= ∅ for all X ⊆ R+. Still,
M,w |= RDp2 for no w ∈W , since X ⊆ [p2]M for no X ⊆ R+.

Corollary 3.14 None of RBψ,RCψ,RDψ follows from one of the sets obtained
by substituting one of {RCψ,RDψ} for RBψ in {RBφ,RB¬φ,¬RD¬ψ} or from
one of the antecedents of GE1, GE2, GE3.

Next, we show that RDL is powerful enough to derive IR and DR.

Theorem 3.15 In RDL the rules corresponding to schemata IR and DR are
derivable, when the reasons are interpreted as derivative reasons.

Suppose M,w |= ORφ and M,w |= �(φ → ψ). Then ∀X ∈ R+∃Y ∈ R+(Y ⊆
X ∩ [φ]M ) and [φ]M ⊆ [ψ]M , so that ∀X ∈ R+∃Y ∈ R+(Y ⊆ X ∩ [ψ]M ). Thus
∃Y ∈ R+(Y ⊆ [ψ]M ); so M,w |= RDφ. Hence ORφ,�(φ→ ψ) RDL RDψ, and

ORφ,�(φ→ ψ) `RDL RDψ, by theorem 3.8.

Suppose now M,w |= OR(φ ∨ ψ) and M,w |= RC¬φ. Then ∀X ∈ R+∃Y ∈
R+(Y ⊆ X∩[φ∨ψ]M ) and R ⊆ [¬φ]M for some R ∈ R+. Thus Y ⊆ R∩[φ∨ψ]M

12See [16]. Since the present problem (involving conflicting reasons) has the same structure
as the deontic problem of explosion (involving conflicting obligations), the solution in [16]
is based on solutions for the deontic problem put forward e.g. in [14,15,29,30]. All these
solutions share the idea of distinguishing two kinds of obligations.
13See [11] and [12, sec.5] for an in-depth discussion of the deontic versions of these principles.
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for some Y ∈ R+; Y ⊆ [¬φ]M ∩ [φ∨ψ]M for some Y ∈ R+; Y ⊆ [ψ]M for some
Y ∈ R+, and so M,w |= RDφ. Hence OR(φ ∨ ψ),RB¬φ RDL RDψ, so that

OR(φ ∨ ψ),RB¬φ `RDL RDψ, by theorem 3.8.

A similar theorem can be proved when OS is substituted for OR.

3.6 Logic of obligation

Finally, it can be proved that OR and OS are KD45 modalities, so that the
logic of obligation is the system SDL of standard deontic logic.

Theorem 3.16 The logic of OR, respectively OS, is KD45.

It is sufficient to show that, for all sets ∆∪{φ} of formulas in the sublanguage
of LRDL containing OR, respectively OS, as the only modality, ∆ `KD45 φ ⇒
∆ RDL φ ⇒ ∆ KD45 φ, where KD45 is the relation of logical consequence
based on the class of models M = (W,R, V ) in which R : W → ℘(W ) is such
that v ∈ R(w) ⇒ R(v) = R(w). The proof is based on the fact that, as said
above, uniform models for standard deontic logic can be viewed as specific RDL
models, together with the fact that RDL models validates all KD45 axioms
and rules. The full proof is included in the extended version of the paper.

As OR and OS are KD45 modality, obligations cannot conflict, while con-
flicts between reasons are allowed (theorem 3.13). This result is of interest
inasmuch as it allows us to interpret SDL plus axioms 4 and 5 as the logic
concerning consistent obligations selected on the basis of deliberation, and so
to vindicate this extension of SDL as apt to model deontic reasoning about
this kind of oughts. Note that, in the present context, axioms 4 and 5 are not
problematic once properly understood. In fact, as per axioms R2 and S2, we
have reasons to take into account what is settled given the background; but
what is supported by a reason, and therefore also what is all things considered
obligatory and permitted, is settled given the background. As a consequence,
we have reasons to take into account our all things considered obligations and
permissions, and this is what axioms 4 and 5 state.

4 Comparison with two related accounts

In this section I consider two versions of the systems put forward by McNamara
and Horty to deal with conflicting obligations and reasons and show how they
can be interpreted in the present framework. The choice of these systems is
due to the fact that they inspired me in the construction of the framework.

4.1 McNamara’s two-level system

This system accounts for the possibility of aggregating obligations in conflict-
tolerant contexts. 14 The key idea is to introduce a distinction between basic,
derived and unproblematic derived obligations, with corresponding operators

14See [15]. I will be only interested in the final part, which presents a distinction between
different kinds of obligation in a minimal setting.
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O0, O1, OU. In this framework a two-level model can be defined as a triple
(W,Φ, V ) where W 6= ∅, Φ is a finite set of formulas, and V is a modal
valuation. To simplify the comparison, the truth conditions for modal formulas
are given as follows, where ⊆Fin is set-theoretical inclusion of a finite set. 15

M,w |= �φ iff [φ]M = W ;
M,w |= O0φ iff ∃φi ∈ Φ([φ]M = [φi]

M );
M,w |= O1φ iff ∃∆ ⊆Fin Φ(∅ 6= [∧∆]M ⊆ [φ]M );
M,w |= OUφ iff ∃∆ ⊆Fin Φ(∅ 6= [∧∆]M ⊆ [φ]M ) and M,w |= ¬O1¬(∧∆)).

As we can see, being unproblematically obligatory entails being obligatory.

Interpreting the two-level framework The connection between the two-
level framework and the present one is the following. Let M = (W,Φ, V )
be a two-level model and define M∗ = (W ∗,R,R+,S+, V ∗) so that W ∗ = W ,
R = {[φ]M : φ ∈ Φ}, S+ = R+ is the closure of R under consistent aggregation
and conditioned addition; V ∗ = V .

Proposition 4.1 M,w |= O0φ iff M∗, w |= RBφ.

Proof. M,w |= O0φ iff ∃φi ∈ Φ([φ]M = [φi]
M ); iff [φi]

M∗ ∈ R. 2

Proposition 4.2 M,w |= O1φ iff M∗, w |= RDφ.

Proof. M,w |= O1φ
iff ∃∆ ⊆Fin Φ([∧∆]M 6= ∅ and [∧∆]M ⊆ [φ]M )
iff ∃X ⊆ R(

⋂
X 6= ∅ and

⋂
X ⊆ [φ]M

∗
), by def. R

iff ∃X ∈ R+(X ⊆ [φ]M
∗
), by def. R+, since X is finite 2

As a corollary we get that M,w |= ¬O1¬φ iff ∀X ⊆ R+(X ∩ [φ]M
∗ 6= ∅).

Proposition 4.3 M,w |= OUφ iff M∗, w |= ORφ.

Proof. M,w |= OUφ
iff ∃∆ ⊆Fin Φ([∧∆]M 6= ∅, [∧∆]M ⊆ [φ]M and M,w |= ¬O1¬(∧∆))
iff ∃∆ ⊆Fin Φ([∧∆]M 6= ∅, [∧∆]M ⊆ [φ]M , ∀X ⊆ R+(X ∩ [∧∆]M

∗ 6= ∅))
iff ∃Y ⊆ R(

⋂
Y 6= ∅ and

⋂
Y ⊆ [φ]M and ∀X ⊆ R+(X ∩

⋂
Y 6= ∅))

iff ∃Y ∈ R+(Y ⊆ [φ]M and ∀X ⊆ R+(X ∩ Y 6= ∅)), since X is finite
iff ∃Y ∈ R+∀X ∈ R+(X ∩ Y 6= ∅ and Y ⊆ [φ]M ), by logic
iff ∀X ∈ R+(X ∩ r([φ]M )) by the definition of r 2

As a consequence, obligations turn out to coincide with derivative reasons, while
unproblematic obligations coincide with reason-based obligations. Hence, Mc-
Namara’s two-level framework can be interpreted as the fragment of RDL
dealing with derivative reasons and reason-based obligations.

15This is a semantic version of the truth conditions proposed in [15, 148-150]. See [15, sec.2]
for a detailed presentation of the system and a justification of the truth conditions.
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4.2 Horty’s default system

Let (L,`) be a system of classical propositional logic. 16 A default rule r is
a pair (a[r], c[r]), where a[r], c[r] ∈ L are the antecedent and the consequent
of r. In terms of reasons, r states that a[r] is a reason to do c[r]. A default
theory is a triple (W,D, <) where ∅ 6=W ⊆ L is a consistent set of background
information, D 6= ∅ a set of default rules and < an irreflexive and transitive
relation on D. A scenario is a set of rules. If S is a scenario, then a[S] = {a[r] :
r ∈ S} and c[S] = {c[r] : r ∈ S}. If S is a scenario and r ∈ D, we say that

(i) Tr[S] = {r ∈ D :W, c[S] ` a[r]}
is the set of rules that are triggered in S.

(ii) Cr[S] = {r ∈ D :W, c[S] ` ¬c[r]}
is the set of rules that are conflicted in S.

(iii) Dr[S] = {r ∈ D : ∃d ∈ Tr[S](r < d and r ∈ Cr[d])}
is the set of rules that are defeated in S.

If S is a scenario, then S is consistent iff S = S − Cr[S] and S is proper iff
S = Tr[S] − Cr[S] −Dr[S]. Thus, a scenario is consistent provided that it is
conflict free and it is proper provided that it contains all and only the triggered
rules that are not conflicted or defeated in it.

Remark 4.4 Say that a default theory is basic when ∀φ(W, c[D]  φ⇔W 
φ). Then, Tr[S] = Tr[D] and Dr[S] = Dr[D] for all S ⊆ D. Thus, there is a
unique set Tr[D]−Dr[D] of undefeated rules and S is proper iff S is consistent,
that is if and only if S = S − Cr[S] ⊆ Tr[D]−Dr[D]. 17

Let D∗ be the union of the set of proper scenarios, c[D∗] be the set of conse-
quents of rules in D∗, and E [c[D∗]] be the set of maximal consistent subsets of
c[D∗]. The elements of E [c[D∗]] are then the most inclusive objectives available
to an agent given the reasons in D and the background information W. 18

Definition 4.5 Let (W,D, <) be a default theory. Then, we can define two
operators, Sh and Oh, corresponding to derivative reason and obligation a là
Horty, by introducing the following truth conditions.

1. (W,D, <) |= Shφ iff ∆  φ for some ∆ ∈ E [c[D∗]].
2. (W,D, <) |= Ohφ iff ∆  φ for every ∆ ∈ E [c[D∗]].

Hence, there is a derivative reason to do φ iff φ is entailed by some objective
and there is an obligation to do φ iff φ is entailed by every objective.

Interpreting the default framework To provide a representation of a de-
fault theory in the framework of RDL, I assume that the theory we want to
represent contains a finite number of rules and a rule to the effect that agents
have to take into account the background information, so that what is set-

16See [13,14]. In [16] a version of this system is used to model the connection between reasons
and obligations. Here I will only consider fixed priority default versions.
17The system in [16] is essentially a basic default theory.
18Here it is assumed that D∗ 6= ∅. This entails that there is a proper scenario in D.
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tled given W is something that cannot be contrasted. A rule of this kind is
(>,∧{W}) and requires that W be finite. So, let us say that a default theory
(W,D, <) is suitable when W and D are finite and (>,∧{W}) is contained
in every proper scenario. Let [φ] be the set of maximal RDL-consistent sets
containing φ and M = (W,R,R+,S+, V ) be such that

W is the set of maximal RDL-consistent sets including W;
R = {[φ] : φ ∈ c[D]};
R+ is the closure of R under combinations of reasons;
S+ is the closure of {[φ] : φ ∈ c[D∗]} under combinations of reasons.

W 6= ∅, sinceW is consistent, and is to be identified with the set of states that
are possible in light of what is settled given the background information. It is
evident that M = (W,R,R+,S+, V ) is a model for RDL. Now, let (W,D, <)
be suitable.

Proposition 4.6 If no modality is in φ, then (W,D, <) |= Shφ iff M |= ♦Sφ.

Proof. M,w |= ♦Sφ iff ∃X ∈ S+(X ⊆ [φ]M )
iff ∃θ1, ..., θN ∈ c[D∗](∅ 6= [θ1]M ∩ ... ∩ [θN ]M ⊆ [φ]M )
iff [∆]M ⊆ [φ]M for some ∆ ∈ E [c[D∗]], since D is finite
iff W,∆ `RDL φ for some ∆ ∈ E [c[D∗]], by the definition of W
iff ∆ `RDL φ for some ∆ ∈ E [c[D∗]], since ∧{W} is in every ∆
iff ∆ ` φ for some ∆ ∈ E [c[D∗]], since φ ∈ L
iff (W,D, <) |= Shφ 2

Proposition 4.7 If no modality is in φ, then (W,D, <) |= Ohφ iff M |= OSφ.

Proof. M,w |= OSφ iff ∀X ∈ S+∃Y ∈ S+(Y ⊆ X ∩ [φ]M ); by the definition
of S+ and the finiteness of D, this is equivalent to [∆]M ⊆ [φ]M for all ∆ ∈
E [c[D∗]]; the rest of the proof is then similar to the previous one. 2

Models for RDL can be regarded as semantic generalizations of default
theories. 19 To be sure, the notions of being conflicted and being defeated are
definable in terms of the consequents of the rules in D: two rules conflict when
their consequents cannot be realized together, while the ordering on D can be
based on an ordering on consequents, which are the items that are assessed as to
their practical weight. In RDL we abstract both from the structure of the rules
and from the specific procedure used to identify what scenarios are proper. This
is a benefit in terms of flexibility, but a cost in terms of transparency, since the
work done by the ordering relation is completely incorporated in the implicit
choice function that allows us to pick out S+ from R+.

5 Conclusion

Consider the following core principles of standard deontic logic.

19Since reasons derive from triggered rules, we are also able to interpret conditional rules
like (a[r], c[r]) in terms of conjunctive reasons W − (X ∩ −Y ), where X is the set of states
where a[r] is realized and Y is the set of states where c[r] is realized.
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1. �(φ↔ ψ) ∧ Oφ→ Oψ;
2. �φ→ Oφ;
3. Oφ→ ♦φ;
4. Oφ→ ¬O¬φ;
5. Oφ ∧ Oψ → O(φ ∧ ψ);
6. �(φ→ ψ) ∧ Oφ→ Oψ;
7. Oφ ∧ Oψ ∧ ♦(φ ∧ ψ)→ O(φ ∧ ψ).

Systems including {3, 5} or {4, 6} do not allow for conflicts, while systems
including {5, 6} or {6, 7} do not avoid explosions. So, in order to allow for
conflicts and avoid explosions one principle in each of {3, 5}, {4, 6}, {5, 6},
{6, 7} is to be discarded. In reason-based deontic logic, the picture is as follows.

1. 2. 3. 4. 5. 6. 7.
RB X X X
RC X X X X
RD X X X X
OR and OS X X X X X X X

OR and OS are conflict-free operators, given that they model kinds of all things
considered obligation resulting from agent deliberation. In addition, since prin-
ciples 4, 5, 6 are invalid relative to RB and RC and 4, 5, 7 are invalid relative to
RD, all of RB, RC, RD are conflict tolerant operators that enable us to avoid
explosions (theorem 3.13) and to construct arguments based on IR and DR
(theorem 3.15). Thus, RDL provides us with an intuitive way to integrate
reasons and obligations in a coherent system. This integration is based on the
notion of combined reason, which is worth considering both from a philosoph-
ical point of view (it allows us to focus on two basic operations characterizing
practical reasoning, namely consistent aggregation and conditioned addition)
and from a logical point of view (it allows us to connect the logic of reasons
with the logic of obligation and to develop a complete system of reason-based
deontic logic). Also, RDL gives us a principled framework for addressing issues
concerning deontic principles. Indeed, RDL was not obtained by constraining
some deontic principles in order to avoid counter-intuitive conclusions. 20 To
the contrary, we have first introduced elementary principles on how to combine
reasons, and then demonstrated how solutions to pressing deontic problems
follow from these principles, given suitable definitions of the deontic operators.
Finally, RDL is connected with evidence-based systems of epistemic logic, thus
providing us with a helpful basis for developing a unified account of reasons in
deontic and epistemic contexts.

20This complaint is expressed in [12, p. 311]: “The kind of neighborhood semantics described
above, while valuable for establishing results about the logics, such as determining what is
derivable from what within the systems, do not yield much illumination into the concepts
being formalized. The conditions on the neighborhoods that validate the various principles
merely mimic, at the level of propositions, the principles being validated”.
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[4] Baltag, A., N. Bezhanishvili, A. Özgün and S. Smets, Justified belief and the topology of
evidence, WoLLIC, Springer, Berlin, 2016, pp. 83–103.
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