
Goal-Directed Decision Procedures for
Input/Output Logics

Alexander Steen 1

University of Luxembourg, FSTM
6, Avenue de la Fonte

L-4364 Esch-sur-Alzette, Luxembourg

Abstract

Input/Output (I/O) logics address the abstract study of conditional norms. Here,
norms are represented as pairs of formulas instead of statements that themselves
carry truth-values. I/O logics have been studied thoroughly in the past, including
further applications and refinements. In this paper, a class of automated reasoning
procedures is presented that, given a set of norms and a concrete situation, decide
whether a specific state of affairs is obligatory according to the output operations of
I/O logics. The procedures are parametric in the underlying logical formalism and
can be instantiated with different classical objects logics, such as propositional logic
or first-order logic. The procedures are shown to be correct, and a proof-of-concept
implementation for propositional I/O logics is surveyed.

Keywords: Deontic logic, I/O logics, Automated reasoning, Normative reasoning.

1 Introduction
Input/Output (I/O) logics have been devised by Makinson and van der Torre [8]
as a class of formal systems for norm-based deontic reasoning. Intuitively, they
formalize the question which obligations can be detached from a given set of
conditional norms and a specific situation. I/O logics differ from other deontic
logics, such as Standard Deontic Logic (SDL, a modal logic of type KD) and
Dyadic Deontic Logic (DDL) [1], in the sense that the norms themselves are
not part of the object logic and hence do not carry truth values. Furthermore,
in SDL and DDL the deontic operators are evaluated with respect to a set of
possible words, whereas in I/O logics they are evaluated with respect to a set of
norms. An overview of deontic logic formalisms can be found in the literature,
see e.g. [7].

The field of automated reasoning studies the conception, implementation,
application and evaluation of methods for automating logical inferences on the
computer [14]. This includes, among others, methods for deciding satisfiability
and tautology, for model generation, and for computer algebra systems. The

1 E-Mail: alexander.steen@uni.lu; ORCID ID: 0000-0001-8781-9462

mailto:alexander.steen@uni.lu
https://orcid.org/0000-0001-8781-9462


2 Goal-Directed Decision Procedures for Input/Output Logics

study of automated deduction systems denotes one of the earliest concerns of ar-
tificial intelligence, and is today often referred to as symbolic AI; in contrast to
recently successful approaches using statistical and learning-based approaches.
One of the core applications is automated theorem proving (ATP): ATP sys-
tems are computer programs that, given a set A of axioms and a conjecture C
as input, try to prove that C is a logical consequence of A, i.e., that C is true
whenever every formula in A holds. In this context, the search for a proof is
conducted autonomously so that no intervention or advice from human users
is necessary. Unfortunately, most ATP systems focus on classical logics only
and hence there are only few systems available for automating logics relevant
to deontic reasoning. Notable exceptions are ATP systems for (normal) modal
logics, but since these logics suffer from various theoretical drawbacks, their
application to normative reasoning in, e.g., legal contexts [5] is limited.

In this paper, a first structured step is taken towards automation of I/O
formalisms: Decision procedures for four different deontic operators of (un-
constrained) I/O logic are presented that decide whether a formula x can be
detached as an obligation given a set of norms and a situation (put in I/O
logic terms: the procedures decide whether a formula x is in the output given
a certain input). They are shown to be sound and complete, and to be decid-
able if the underlying logical language is decidable. Furthermore, a prototype
implementation of the procedures is presented. This implementation is freely
available as a web application and can be used to conduct own experiments.
Related work. I/O logics have also been employed in the context of studying
conditional permissions [10]. Also, there exist extensions of I/O logics, called
constrained I/O logics, that address the classical deontic paradoxes [9] such as
contrary-to-duty scenarios. Recent work furthermore addresses weaker notions
of I/O logic that allow for a fined-grained control over employed inference
principles [12].

From a computational perspective, there are comparably few related ap-
proaches available. Complexity aspects of I/O logics have been studied [17].
However, the methods used in the analysis do not yield means for implementing
respective decision procedures. Quite recent work focuses on automating other
deontic logics via shallow semantical embeddings into classical higher-order
logic [3]. However, such an approach is not yet available for all unconstrained
I/O logic operations [2], and indeed seems more complex than for other logi-
cal systems in the context of deontic reasoning [4]. There are representation
results available for expressing I/O logics in modal logic; and there exists an
alternative proof-theoretic (dynamic) characterization of I/O logic [16]. How-
ever, these results have, up to the author’s knowledge, not yet been utilized in
the context of automated reasoning systems.

2 I/O Logics
I/O logic is used for studying conditional norms, e.g., obligations under some
legal code. Here, conditional codes are represented as pairs of formulas and
therefore do not carry truth values themselves, whereas declarative statements



Steen 3

are usual Boolean formulas that come from some logical language L.
Let L be a logical language that is closed under the truth-functional con-

nectives such as conjunction (∧) and disjunction (∨). From a semantical per-
spective, it is assumed that the eligible logical languages considered in the
following come with a derivation relation ` for which the operation Cn(A),
given by Cn(A) = {x ∈ L | A ` x}, is a Tarskian closure operator. A promi-
nent example for L in the context of I/O logics is the language of classical
propositional logic with the usual consequence relation (often assumed in the
literature). However, also first-order logic or even higher-order logic languages
are possible. In the following, it is assumed that L comes from a classical logic.

A normative system N ⊆ L × L is a set of pairs (a, x) of formulas. The
pair (a, x) represents the conditional obligation that given a, it ought to be x.
By convention, given a norm (a, x) the first element a is also referred to as
the body and the second element x is referred to as the head. The image of
N , denoted N(A), where A is a set of formulas, is given by N(A) = {x ∈ L |
(a, x) ∈ N for some a ∈ A}. Given a normative system N and a set of formulas
A (the input set), out(N,A) denotes the output of A under N where out is the
respective output operator.

The semantics of I/O logics is operational in the sense that the meaning of
normative concepts is given by generated outputs given a set of norms and an
input. The four output operators outi, i ∈ {1, 2, 3, 4}, studied in the literature
are defined as follows [8]:

out1(N,A) = Cn(N(Cn(A)))
out2(N,A) =

⋂{
Cn(N(V )) | V ⊇ A, V complete

}
out3(N,A) =

⋂{
Cn(N(B)) | A ⊆ B = Cn(B) ⊇ N(B)

}
out4(N,A) =

⋂{
Cn(N(V )) | A ⊆ V ⊇ N(V ), V complete

}
where a set V ⊆ L is called complete iff V = L or V is a maximally consistent
set.

A proof-theoretic characterization of the different output operations can
be achieved by putting outi(N) =

{
(A, x) | x ∈ outi(N,A) for some A ⊆ L

}
,

i ∈ {1, 2, 3, 4}. The specific inference rules are the following (the first
component of each pair are assumed to be singleton sets and the curly braces
are omitted):

SI : From (a, x) to (b, x) if b ` a
WO : From (a, x) to (a, y) if x ` y
AND : From (a, x), (a, y) to (a, x ∧ y)
OR: From (a, x), (b, x) to (a ∨ b, x)
CT : From (a, x), (a ∧ x, y) to (a, y)

In earlier work [8] it is shown that (a, x) is in the respective set outi(N) if and
only if it is contained in the least superset of N ∪ (>,>) that is closed under
the inference rules as follows: {SI ,WO ,AND} for out1, {SI ,WO ,AND ,OR}
for out2, {SI ,WO ,AND ,CT} for out3, and {SI ,WO ,AND ,OR,CT} for out4.
For non-singleton sets A, derivability of (A, x) from N is reduced to derivability
of (a, x), where a = a1 ∧ . . . ∧ an is some conjunction of the elements of A.



4 Goal-Directed Decision Procedures for Input/Output Logics

The empty input is interpreted as an empty conjunction and assumed to be a
tautology; hence (∅, x) is reduced to derivability of (>, x).

Although there is an adequate syntactic characterization for I/O logics that
can be used to derive outputs, the above calculi are not machine-oriented in
the sense that they can be implemented as-is in an effective manner on a com-
puter. This is, in particular, because the rules SI and WO allow to derive an
infinite number of outputs, and it is not immediately clear what intermediate
derivations actually contribute to the ultimate proof goal. However, without
effective means of automation it is challenging, or even impossible, to apply
I/O logics to practical scenarios, e.g., in the context of multi-agent systems or
legal reasoning use cases [13].

3 Decision Procedures for I/O logic
In this section, four different decision procedures are presented, one for each
output operation, that allow automated reasoning within I/O logics in an ef-
fective way. It is implicitly assumed that ` is a sound and complete derivation
relation for L. Furthermore, it is assumed that inputs to the decision proce-
dures are finite, i.e. N is a finite set of norms and A is a finite set of formulae.

Let In-Outi, i ∈ {1, 2, 3, 4}, denote the following decision problem: Given
a formula x ∈ L, a set of norms N and an input A, is it the case that x ∈
outi(N,A)? The decision procedure that addresses the respective decision
problem In-Outi is denoted IO`i . By convention, (N,A, x) ∈ IO`i is written iff
IO`i gives ”yes” for a set of norms N , input A and prospective output x; i.e., it
is identified with the subset of parameter tuples for which it decides positively.

Note that because it is not fully specified what logical formalism L is em-
ployed, the procedures IO`i presented in the following in fact describe a class
of parametric decision procedures that can be used in different contexts. As
an example, if L is taken as classical propositional logic the implementation of
the IO`i is straight-forward, and they are guaranteed to terminate and to yield
correct results.

It is also possible to apply each IO`i to logics that are not decidable: Already
existing automated theorem provers can be utilized as oracle for `, e.g., in the
context of first-order logic or higher-order logic. This way a wide range of
input-output logic reasoners can be implemented with comparably low effort.
Of course, for logics that are not decidable the procedures IO`i might never
terminate; as usual in automated reasoning in expressive logics.

The decision procedures are given in pseudo-code in the following.

3.1 Simple-minded output
Listing 1 shows the decision procedure IO`1 for deciding In-Out1 with respect
to a logical language L with underlying derivation relation `.

The general idea of IO`1 is the following: First, the subset N ′ of norms whose
body is satisfied by the input A is calculated. Then, the procedure returns Yes
if and only if the heads of N ′ satisfy x. Note that this approach allows to
effectively handle the infinite sets Cn(A) and Cn(N(Cn(A))) that cannot be



Steen 5

1 Input: N = {(b1, h1), (b2, h2), . . .} set of norms
2 A = {a1, . . . , am} set of formulae
3 x formula
4 Output: Yes or No
5

6 N ′ := {(b, h) ∈ N | A ` b}
7 if {h | (b, h) ∈ N ′} ` x then
8 return Yes
9 else

10 return No
11 endif

Listing 1: Decision procedure IO`1 for In-Out1.

computed exhaustively in an explicit way. The procedure ` used here acts as
oracle. Depending on the logic L that is assumed, the effort for implementing
such a procedure may vary. An example implementation is described in §4.

Adequateness of IO`1 is ensured as shown in the following:

Theorem 3.1 (Partial correctness of IO`1 ) IO`1 is sound and complete for
In-Out1; in particular, x ∈ out1(N,A) if and only if (N,A, x) ∈ IO`1 .

Proof For the first direction, assume x ∈ out1(N,A) for some formula
x ∈ L. By definition, N(Cn(A)) ` x hence there exists some subset
{(b1, h1), . . . , (bm, hm)} ⊆ N of norms such that A `

∧m
i=1 bi and

∧m
i=1 hi ` x.

Since N ′ as computed in line 6 is the largest subset of N for which each body
of (b, h) ∈ N ′ it holds that A ` b, by monotony of ` it also holds that
{h | (b, h) ∈ N ′} ` x. As a consequence, the if condition in line 7 is true
and thus (N,A, x) ∈ IO`1 .

For the second part, assume (N,A, x) ∈ IO`1 . Then, by definition, there is a
subset N ′ of norms such that {h | (b, h) ∈ N ′} ` x. It furthermore holds that
A ` b for each (b, h) ∈ N ′ by construction. As a consequence, it holds that
x ∈ Cn(N ′(Cn(A))). Since N ′ ⊆ N it follows that x ∈ Cn(N(Cn(A))) and
hence x ∈ out1(N,A). 2

Theorem 3.2 (Total correctness of IO`1 ) Let ` be a decidable derivation
relation for L. IO`1 terminates and is sound and complete for In-Out1.

Proof Theorem 3.1 already yields soundness and completeness. Termination
is straight-forward: As all input is finite and since ` is decidable by assumption
the set N ′ can be constructed in finite time. Also, the if-condition in line 7
can be evaluated in finite time as ` is decidable by assumption. 2

3.2 Basic output
Listing 2 presents the decision procedure IO`2 for deciding In-Out2.

IO`2 is a slightly modified version of the respective procedure for In-Out1,
adapted to incorporate the validity of the OR rule. If the output of a formula
can be established for different inputs, then it is also in the output set for
the disjunction of these inputs. From a semantical perspective this amounts
to incorporating reasoning by cases (cf. definition of out2 in §2): If a norm n



6 Goal-Directed Decision Procedures for Input/Output Logics

1 Input: N = {(b1, h1), (b2, h2), . . .} set of norms
2 A = {a1, . . . , am} set of formulae
3 x formula
4 Output: Yes or No
5

6 N ′ := ∅
7 for all (b, h) ∈ N do
8 C := {(b′, h′) ∈ N | h′ ` h}
9 if A `

∨
{b′ | (b′, h′) ∈ C} then

10 N ′ := N ′ ∪ {(b, h)}
11 endif
12 endfor
13

14 if {h | (b, h) ∈ N ′} ` x then
15 return Yes
16 else
17 return No
18 endif

Listing 2: Decision procedure IO`2 for In-Out2.

is triggered by every complete extension of the input, then the head of n is
contained in the output set. In order to reflect this in IO`2 , the calculation of
the subset of triggered norms N ′ is modified as follows. If n ∈ N is a norm,
then let n′ ∈ N denote a n-compatible norm if and only if the body of n′ is
at least as strong as the body of n, i.e., it holds that h′ ` h where h and h′

are the heads of n and n′, respectively. Intuitively, every n-compatible norm
can be considered a conditional case in which n’s head is triggered. In order
to check whether the head of a given norm n is triggered in every complete
extension of A, the set of n-compatible norms is first collected in a set C (cf.
line 8). Subsequently, it is checked whether the disjunction of every body in C
is a consequence of A (if-condition in line 9). If this is the case, the norm n is
added to the set of triggered norms N ′. This is iteratively conducted for every
norm on N ; as soon as the for-loop has terminated, the set N ′ contains every
norm that is triggered by A in the basic setting. Finally, just like for IO`1 , is
it checked whether the prospective output x is entailed by the heads of N ′ (cf.
line 14) and a respective answer is returned.

The following results establish adequateness for In-Out2:

Theorem 3.3 (Partial correctness of IO`2 ) IO`2 is sound and complete for
In-Out2; in particular, x ∈ out2(N,A) if and only if (N,A, x) ∈ IO`2 .

Proof For the left-to-right direction, the contrapositive is shown. Assume that
(N,A, x) /∈ IO`2 . By definition, it follows that {h | (b, h) ∈ N ′} 6` x, where N ′

is the set generated in lines 6-12. It remains to be shown that there is no head
h′ ∈ L that was incorrectly not detached by IO`2 . Let n = (b′, h′) ∈ N \ N ′
be a norm such that {h | (b, h) ∈ N ′} 6` h′. By construction it holds that
A 6`

∨
{b | (b, h) ∈ N and h ` h′}, and hence there exists at least one complete

extension V ⊇ A such that V ` ¬b for every (b, h) with h ` h′. It follows
that N(V ) 6` h′ for some complete V ⊇ A. By generalization, it holds that



Steen 7

1 Input: N = {(b1, h1), (b2, h2), . . .} set of norms
2 A = {a1, . . . , am} set of formulae
3 x formula
4 Output: Yes or No
5

6 A′ := A
7 N ′ := {(b, h) ∈ N | A′ ` b}
8 N := N \N ′

9

10 while not {h | (b, h) ∈ N ′} ` x do
11 A′ := A′ ∪ {h | (b, h) ∈ N ′}
12 M := {(b, h) ∈ N | A′ ` b}
13 if M = ∅ then
14 return No
15 else
16 N ′ := N ′ ∪M

17 N := N \M
18 endif
19 end while
20 return Yes

Listing 3: Decision procedure IO`3 for In-Out3.

N(V ) 6` x and thus x /∈ out2(N,A).
For the second part, assume (N,A, x) ∈ IO`2 . Then, by construction, there

exists a set N ′ ⊆ N such that {h | (b, h) ∈ N ′} ` x. Let (b, h) ∈ N ′ be some
norm. It follows that there exists some set of norms {(b′1, h′1), . . . , (b′m, h′m)} ⊆
N such that h′i ` h, for each 1 ≤ i ≤ m, and A ` b′1 ∨ . . . ∨ b′m. By monotony,
it also holds that V ` b′1 ∨ . . . ∨ b′m for every complete set V ⊇ A. Since V is
complete, it follows that V ` b′i for some 1 ≤ i ≤ m and hence N(V ) ` h. By
generalization, it holds that N(V ) `

∧
{h | (b, h) ∈ N ′} and thus N(V ) ` x.

Again, by generalization, N(V ) ` x for every complete V ⊇ A and hence
x ∈ out2(N,A).

2

Theorem 3.4 (Total correctness of IO`2 ) Let ` be a decidable derivation
relation for L. IO`2 terminates and is sound and complete for In-Out2.

Proof Theorem 3.3 already yields soundness and completeness. The termina-
tion argument is analogous to the the IO`1 case if ` is decidable. 2

3.3 Reusable output
Listing 3 shows the decision procedure IO`3 for deciding In-Out3 with respect
to a logical language L with underlying derivation relation `.

In IO`3 a more complex proof search is conducted in order to accommodate
the interdependence between the operators Cn(.) and N(.) in the semantics of
out3. The basic approach is quite similar to the IO`1 procedure for out1: A set
N ′ of norms is calculated that is triggered by the input A; then, it is checked
whether the heads of these norms N ′ satisfy the output x. However, since
out3 validates the CT rule, it is also possible that x it not satisfied directly



8 Goal-Directed Decision Procedures for Input/Output Logics

by the heads of N ′ but rather by some superset of N ′ which is triggered by
A∪{h | (b, h) ∈ N ′}. Put differently, the output is reused to further strengthen
the input and, in turn, to possibly trigger more outputs. As this can be done
repeatedly, the IO`3 procedure iteratively updates the input (called A′) by the
heads of the triggered norms, and subsequently collects all newly triggered
norms (by A′) in an updated set N ′. If in some iteration N ′ satisfies the
output x, the proof search succeeds; if, however, x is not satisfied and there
are no new norms triggered, the process is terminated and a negative answer
is returned. The termination condition intuitively reflects that N ′ is a fixed
point with respect to Cn(.) and N(.) and moreover does not satisfy x.

Let A∗ be the least superset of A that is closed both under Cn and N .
The following results establish adequateness for In-Out3, using so-called bulk
increments [15]:

Theorem 3.5 (Partial correctness of IO`3 ) IO`3 is sound and complete for
In-Out3; in particular, x ∈ out3(N,A) if and only if (N,A, x) ∈ IO`3 .

Proof Assume x ∈ out3(N,A) for some formula x ∈ L. Then, it holds
that x ∈ Cn(N(A∗)). This implies that there exists a subset N ′ =
{(b1, h1), . . . , (bm, hm)} ⊆ N of norms such that A∗ `

∧m
i=1 bi and

∧m
i=1 hi ` x.

By construction, in every iteration it holds that A ⊆ A′ and either N(A′) ` x in
which case already Yes is returned, or A′ will eventually reach a fixed point that
is A∗. In the latter case N(A′) ` x iff N(A∗) ` x, which holds by assumption,
and Yes is returned. In either case, (N,A, x) ∈ IO`3 .

For the second part, assume (N,A, x) ∈ IO`3 . Then, by construction there
exists some A′ such that A ⊆ A′ ⊆ A∗ and N(A′) ` x. Since N is monotone,
it also holds that N(A∗) ` x and hence x ∈ out3(N,A). 2

Theorem 3.6 (Total correctness of IO`3 ) Let ` be a decidable derivation
relation for L. IO`3 terminates and is sound and complete for In-Out3.

Proof Theorem 3.5 already yields soundness and completeness. As ` is decid-
able and every input is finite, every loop iteration itself terminates. There are
only a finite number of loop iterations, as the set N is monotonously decreasing
and Cn(.) is monotone and idempotent. If no new norms can be triggered, the
loop is terminated. 2

3.4 Basic reusable output
Listing 4 shows the decision procedure IO`4 for deciding In-Out4 with respect
to a logical language L with underlying derivation relation `.

The procedure IO`4 combines the incremental proof search approach of IO`3
with the method for calculating the triggered norms in the basic output sce-
nario as incorporated by IO`2 : In the resulting procedure, the set N ′ of (basic)
triggered norms is generated first (cf. lines 7-13). The remaining norms that
have not been triggered (yet) are collected in the set N . If the heads of N ′
do not entail the prospective output x, the set N ′ is incrementally augmented
with the previous output (cf. line 17) and, subsequently, the freshly triggered
norms are calculated in an auxiliary set M (cf. lines 18-24). If, at some point



Steen 9

1 Input: N = {(b1, h1), (b2, h2), . . .} set of norms
2 A = {a1, . . . , am} set of formulae
3 x formula
4 Output: Yes or No
5

6 A′ := A
7 N ′ := ∅
8 for all (b, h) ∈ N do
9 C := {(b′, h′) ∈ N | h′ ` h}

10 if A′ `
∨
{b′ | (b′, h′) ∈ C} then

11 N ′ := N ′ ∪ {(b, h)}
12 endif
13 endfor
14 N := N \N ′

15

16 while not {h | (b, h) ∈ N ′} ` x do
17 A′ := A′ ∪ {h | (b, h) ∈ N ′}
18 M := ∅
19 for all (b, h) ∈ N do
20 C := {(b′, h′) ∈ N | h′ ` h}
21 if A′ `

∨
{b′ | (b′, h′) ∈ C} then

22 M := M ∪ {(b, h)}
23 endif
24 endfor
25 if M = ∅ then
26 return No
27 else
28 N ′ := N ′ ∪M

29 N := N \M
30 endif
31 end while
32 return Yes

Listing 4: Decision procedure IO`4 for In-Out4.

in the iterative process, no new norms have been triggered (i.e. M is empty),
the procedure returns No. In the opposite case, the loop terminates with return
value Yes as soon as the set of triggered norms N ′ entails the output x (cf.
while condition in line 16).

The following results establish adequateness for In-Out4:

Theorem 3.7 (Partial correctness of IO`4 ) IO`4 is sound and complete for
In-Out4; in particular, x ∈ out4(N,A) if and only if (N,A, x) ∈ IO`4 .

Proof The argument is analogous to the proof of Theorem 3.5. However, in
every incremental step, the set of triggered norms corresponds to the basic
output, hence accommodating the principle of reasoning by cases analogously
to Theorem 3.3. 2

Theorem 3.8 (Total correctness of IO`4 ) Let ` be a decidable derivation
relation for L. IO`4 terminates and is sound and complete for In-Out4.

Proof Theorem 3.7 already yields soundness and completeness. As ` is de-
cidable and every input is finite, every loop iteration itself terminates. There



10 Goal-Directed Decision Procedures for Input/Output Logics

Figure 1. The I/O Logic Workbench: An open-source implementation of the IO`
i

procedures as a browser-based application.

is only a finite number of iterations as the set M is monotonously decreasing
and Cn(.) is monotone and idempotent. If no new norms can be triggered, the
loop is terminated. 2

4 Implementation
A prototype implementation of the decision procedures presented in this paper
is freely available as an open-source software library at GitHub. 2

This above library constitutes the basis for the I/O Logics Workbench
(IOLW) that provides graphical means for reasoning in I/O logics. IOLW
is a browser-based application and is implemented in JavaScript. There is no
need for any backend server infrastructure, as IOLW is implemented purely as
a client-side application. Hence, it runs in every reasonably current browser,
ready-to-use for conducting own experiments without any installation or set-up.
An instance of IOLW is hosted at the author’s personal web site. 3

The user interface of IOLW is presented in Fig. 1. In the left menu panel, a
user can choose which out operation should be used for the reasoning process.
On the right side, the input A, the set of norms N and a prospective output
x can be entered. The input language is an ASCII representation of propo-
sitional logic, where |, & and ˜ denote disjunction, conjunction and negation,
respectively. The input A is a comma separated list of formulas, whereas the
set of norms N is, as usual, represented as a set of pairs. Every norm is entered

2 See github.com/I-O-Logic for the source code files and further information.
3 See alexandersteen.de/iol for details.

https://github.com/I-O-Logic/iol-workbench
https://alexandersteen.de/iol


Steen 11

as a separate line in the text area. Additionally, some example scenarios can
be loaded using the respective buttons at the top.

The implementation of the decision procedure library and the IOLW will
be extended with further I/O operations and input logics, cf. further work in
§5 below for more details.

5 Conclusion
In this paper four decision procedures are presented, one of each outi operation,
i ∈ {1, 2, 3, 4}, that abstract from the underlying classical logical language L.
These procedures are designed to decide whether a given formula x ∈ L is
in the output outi(N,A), given a set of norms N and an input A. They are
shown to be correct (sound and complete) and to be decidable if the derivation
relation ` of the underlying logic L is decidable.

Instead of deciding for every prospective output x ∈ L individually, the
ideas underlying the decision procedures can also be used to calculate a finite
base {x1, . . . , xn} ⊂ L of the output set outi(N,A) itself. Such a set can
be constructed by modifying the presented procedures in such a way that all
triggered norms are collected in a result set. Deciding In-Outi can then be
reduced to checking entailment with respect to {x1, . . . , xn}.

The output operators with so-called throughput [8], denoted out+i for i ∈
{1, 2, 3, 4}, can easily be covered by the procedures presented in this paper:
Intuitively, these operators behave similar to the respective operators without
throughput with the exception that the input A is incorporated into the output
set (in addition to the generated output). It is known that out+2 and out+4
coincide and that they collapse to classical consequence (cf. [9] for details).
Moreover, the operators out+1 and out+3 can be expressed in terms of their non-
throughput counterpart [9]. As a consequence, the decision procedures for all
the out+i operators can simply be reduced to the underlying routines for ` (in
case of out+2 and out+4 ) and to the routines for out1 and out3 (in case of out+1
and out+3 , respectively).

On the practical side the procedures are quite simple to implement, since
already existing implementations of decision procedures for ` can be used as
a black box. A prototypical browser-based implementation for classical propo-
sitional logic as underlying logical language is presented. The implementation
is open-source, publicly available at GitHub, and can be used for conduct-
ing (small) independent normative experiments. The browser-based graphical
user interface is primarily intended to serve as a pedagogical tool, e.g., to be
used in university teaching for a more interactive exposure to logical reason-
ing. However, the decision procedures themselves can easily be used as general
components in larger software systems.
Future work. The presented procedures only address unconstrained in-
put/output operations. While they are interesting operations for different ap-
plications, it is pointed out in the literature that they are not fully fit for usage
in normative and deontic context [9]; e.g. due to lack of robustness to the usual
deontic paradoxes. Further work thus focuses on generalizing the procedures



12 Goal-Directed Decision Procedures for Input/Output Logics

to constrained input/output logics [9] that address these aspects.
It is planned to investigate whether the presented decision procedures may

contribute to the practical employment of so-called logical input/output nets [6],
lions for short, which combine different normative systems and output oper-
ators in a graph structure. Each node of a lion could be implemented by an
independent instance of some appropriate IO`i procedure.

Furthermore, a prototypical implementation for first-order logic as an un-
derlying formalism is ongoing work. Also, empirical studies have to be con-
ducted for assessing the practical effectiveness of the proposed approach for
larger normative systems, e.g., in the context of reasoning with large legal
knowledge bases [13].

Finally, the computational approach presented in this paper may be gener-
alized to allow for the employment of non-classical logics as underlying logical
formalism, e.g., for intuitionistic I/O logics [11] and further variants.

Acknowledgements
The author would like to thank the anonymous reviewers for their valuable
feedback that led to significant improvements of the paper.

References

[1] Åqvist, L.: Deontic logic. In: Handbook of philosophical logic, pp. 147–264. Springer
(2002)

[2] Benzmüller, C., Farjami, A., Meder, P., Parent, X.: I/O logic in HOL. FLAP 6(5), 715–
732 (2019)

[3] Benzmüller, C., Farjami, A., Parent, X.: A dyadic deontic logic in HOL. In: Broersen,
J.M., Condoravdi, C., Shyam, N., Pigozzi, G. (eds.) DEON. pp. 33–49. College
Publications (2018)

[4] Benzmüller, C., Parent, X.: I/O logic in HOL – First Steps. CoRR abs/1803.09681
(2018), http://arxiv.org/abs/1803.09681

[5] Boella, G., van der Torre, L.W.N.: Regulative and constitutive norms in normative
multiagent systems. In: KR. pp. 255–266. AAAI Press (2004)

[6] Boella, G., van der Torre, L.W.N.: A logical architecture of a normative system. In:
DEON. Lecture Notes in Computer Science, vol. 4048, pp. 24–35. Springer (2006).
https://doi.org/10.1007/11786849_5

[7] Gabbay, D., et al. (eds.): Handbook of Deontic Logic and Normative Systems. College
Publications (2013)

[8] Makinson, D., van der Torre, L.W.N.: Input/Output Logics. J. Philosophical Logic 29(4),
383–408 (2000). https://doi.org/10.1023/A:1004748624537

[9] Makinson, D., van der Torre, L.W.N.: Constraints for Input/Output Logics. J.
Philosophical Logic 30(2), 155–185 (2001). https://doi.org/10.1023/A:1017599526096

[10] Makinson, D., van der Torre, L.W.N.: Permission from an input/output perspective. J.
Philosophical Logic 32(4), 391–416 (2003). https://doi.org/10.1023/A:1024806529939

[11] Parent, X., Gabbay, D., Torre, L.v.d.: Intuitionistic basis for input/output logic. In:
Hansson, S.O. (ed.) David Makinson on Classical Methods for Non-Classical Problems,
pp. 263–286. Springer Netherlands, Dordrecht (2014). https://doi.org/10.1007/978-94-
007-7759-0_13

[12] Parent, X., van der Torre, L.W.N.: I/O logics with a consistency check. In: Broersen,
J.M., Condoravdi, C., Shyam, N., Pigozzi, G. (eds.) DEON. pp. 285–299. College
Publications (2018)

http://arxiv.org/abs/1803.09681


Steen 13

[13] Robaldo, L., et al.: Formalizing GDPR provisions in reified I/O logic: the
DAPRECO knowledge base. Journal of Logic, Language and Information (2019).
https://doi.org/10.1007/s10849-019-09309-z

[14] Robinson, J.A., Voronkov, A. (eds.): Handbook of Automated Reasoning (in 2 volumes).
Elsevier and MIT Press (2001)

[15] Stolpe, A.: Norms and Norm-System Dynamics. Ph.D. thesis, University of Bergen,
Norway (2008)

[16] Straßer, C., Beirlaen, M., Putte, F.V.D.: Adaptive logic characterizations of input/output
logic. Studia Logica 104(5), 869–916 (2016). https://doi.org/10.1007/s11225-016-9656-1

[17] Sun, X., Robaldo, L.: On the complexity of input/output logic. Journal of Applied Logic
25, 69 – 88 (2017). https://doi.org/10.1016/j.jal.2017.03.002


	Introduction
	I/O Logics
	Decision Procedures for I/O logic
	Simple-minded output
	Basic output
	Reusable output
	Basic reusable output

	Implementation
	Conclusion
	References

