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Christoph Beierle
FernUniversität in Hagen, Hagen, Germany

christoph.beierle@fernuni-hagen.de

Marco Ragni
Technische Universität Chemnitz, Chemnitz, Germany

marco.ragni@hsw.tu-chemnitz.de

Frieder Stolzenburg
Hochschule Harz, Wernigerode, Hagen, Germany

fstolzenburg@hs-harz.de

Matthias Thimm
FernUniversität in Hagen, Hagen, Germany

matthias.thimm@fernuni-hagen.de

Because information for real life AI applications is usually pervaded by uncer-
tainty and subject to change, nonclassical reasoning approaches are required. At
the same time, psychological findings indicate that human reasoning cannot be
completely described by classical logical systems. Sources of explanations are in-
complete knowledge, incorrect beliefs, or inconsistencies. A wide range of reasoning
mechanism has to be considered, such as analogical or defeasible reasoning, possibly
in combination with machine learning methods. The field of knowledge representa-
tion and reasoning offers a rich palette of methods for uncertain reasoning both to
describe human reasoning and to model AI approaches.

This special issue includes revised and extended versions of the best papers
presented at the 7th Workshop on Formal and Cognitive Reasoning (FCR-2021)
which was co-located with the 44th German Conference on Artificial Intelligence
(KI-2021). Additionally, the special issue contains further contributions resulting
from an open call for papers dedicated to the themes of the workshop. The KI-2021
conference and all its workshops were expected to take place in Berlin, Germany.
However, because of the Corona pandemic all were turned into fully virtual events.
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As the previous editions of this workshop series, FCR-2021 was organized jointly
by two special interest groups of the German Informatics Society (GI, Gesellschaft
für Informatik), the Special Interest Group on Knowledge Representation and Rea-
soning (GI-Fachgrupppe Wissensrepräsentation und Schließen), and the Special In-
terest Group on Cognition (GI-Fachgrupppe Kognition). FCR-2021 was the 7th
Workshop on Formal and Cognitive Reasoning, following previous workshops in
Dresden, Germany (2015), Bremen, Germany (2016), Dortmund, Germany (2017),
Berlin, Germany (2018), Kassel, Germany (2019), and Bamberg, Germany/online
(2020).

The aim of this series of workshops is to address recent challenges and to present
novel approaches to uncertain reasoning and belief change in their broad senses,
and in particular provide a forum for research work linking different paradigms of
reasoning. In 2021, we welcomed especially contributions on intersections between
human and formal aspects such as computational thinking. A special focus is on
papers that provide a base for connecting formal-logical models of knowledge rep-
resentation and cognitive models of reasoning and learning, addressing formal and
experimental or heuristic issues.

In their paper The Weak Completion Semantics and Counterexamples, Meghna
Bhadra and Steffen Hölldobler deal with the observations which conclusions partic-
ipants in an experiment made if the antecedent of a conditional sentence is denied.
While most participants concluded that the negation of the consequent holds, a sig-
nificant number of participants answered nothing follows if the antecedent of the
conditional sentence was non-necessary. The authors extend the Weak Completion
Semantics which correctly models the answers of the majority, but cannot explain
the number of nothing follows answers, by counterexamples, allowing it to explain
the experimental findings.

The paper Epistemic State Mappings among Ranking Functions and Total Pre-
orders by Jonas Philipp Haldimann, Christoph Beierle, and Gabriele Kern-Isberner
addresses two common models for epistemic states that can represent conditional be-
liefs, namely ranking functions and total preorders on possible worlds. Connections
within and between these frameworks are formalized as epistemic state mappings.
Postulates concerning the preservation of properties under the application of these
mappings are introduced, characterizing important properties like syntax splitting
or the compatibility with operations like marginalization and conditionalization.
The interrelationships among the postulates for epistemic state mappings within
and across the two frameworks are evaluated, establishing dependencies as well as
incompatibilities among postulates.
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In the contribution Probabilistic Deontic Logics for Reasoning about Uncertain
Norms, Vincent de Wit, Dragan Doder, and John Jules Meyer present a proof-
theoretical and model-theoretical approach to probabilistic logic for reasoning about
uncertainty about normative statements. They introduce two logics that extend
both the language of monadic deontic logic and the language of probabilistic logic.
The first logic allows statements like “the probability that one is obliged to be quiet
is at least 0.9”. The second logic allows iteration of probabilities in the language.
Both logics are axiomatized, the corresponding semantics are provided, and the
axiomatizations are shown to be sound and complete. In addition, it is proven
that both logics are decidable and that the problem of deciding satisfiability for the
simpler of the two logics is in PSPACE, no worse than that of deontic logic.

In the paper Activation-Based Conditional Inference, Marco Wilhelm, Diana
Howey, Gabriele Kern-Isberner, Kai Sauerwald, and Christoph Beierle develop
activation-based conditional inference which combines conditional reasoning and
ACT-R, a cognitive architecture developed to formalize human reasoning. The
basic idea of activation-based conditional inference is to determine a reasonable,
cognitively adequate subset of a conditional belief base before drawing inductive in-
ferences. Central to activation-based conditional inference is the activation function
which assigns to the conditionals in the belief base a degree of activation mainly
based on the conditional’s relevance for the current query and its usage history. The
paper presents a blueprint for activation-based conditional inference and illustrates
how focusing, forgetting, and remembering are included within the framework.

In the final contribution of this special issue, Do humans find postulates of belief
change plausible?, Clayton Kevin Baker and Thomas Meyer use various empirical
methods to test whether humans agree with postulates of non-monotonic reason-
ing and belief change. The paper investigates whether postulates of revision and
update are plausible with human reasoners when presented as material implication
statements. Statistical methods are used to measure the association between the an-
tecedent and the consequent of each postulate. The results show that participants
tend to find postulates of update more plausible than postulates of revision.
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Abstract

An experiment has revealed that if the antecedent of a conditional sentence
is denied, then most participants conclude that the negation of the consequent
holds. However, a significant number of participants answered nothing follows
if the antecedent of the conditional sentence was non-necessary, that is the case
when given a conditional if A then C, both (¬A ¬C) and (¬A C) are deemed
possible. The Weak Completion Semantics correctly models the answers of the
majority, but cannot explain the number of nothing follows answers. In this
paper we extend the Weak Completion Semantics by counterexamples. The
extension allows it to explain the experimental findings.

1 Introduction
Conditional sentences are propositions of the form if A then C where A and C are
atomic sentences called antecedent and consequent, respectively. Four kinds of con-
ditional inference tasks have been a common area of research by psychologists to
date:

1. Affirmation of the antecedent (AA): if A then C and A, therefore C.

2. Denial of the antecedent (DA): if A then C and ¬A, therefore ¬C.

∗Authors are mentioned in alphabetical order.
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3. Affirmation of the consequent (AC): if A then C and C, therefore A.

4. Denial of the consequent (DC): if A then C and ¬C, therefore ¬A.

In classical, two-valued propositional logic, conditional sentences are taken to mean
material implications and bi-conditionals to mean (material) equivalence. The con-
clusion for the DA and the AC are hence considered to be logical fallacies (invalid)
for a conditional sentence whereas they are considered valid for a bi-conditional.
However, from our human experiences we know that it is not always the case in
real life. When replacing the above abstract conditional sentences which have no
everyday context with conditionals which do, the inferences largely depend on the
semantics and pragmatics of human communication, culture, and context. In this
paper, we therefore discuss how everyday conditional sentences can be categorized
into four proposed semantic categories. We also share the results of an experiment
reported in [7, 8] and (with particular regard to the DA) demonstrate how such
classifications can help model an average human (DA) reasoner.

The Weak Completion Semantics (WCS) is a three-valued, non-monotonic cog-
nitive theory, which can not only adequately model the suppression task by [3] as
shown by [9], human syllogistic reasoning as shown by [35], and DC inferences as
shown by [8] but also the AA, AC, and the majority ¬C answers of the DA as
shown by [7]. While the existing framework of the WCS adequately models the
general consensus of the ¬C responses generated in case of the DA inference task, it
did not however, seem adequate to model the number of nothing follows responses,
which is especially significant in case of conditional sentences with non-necessary
antecedents. Here, nothing follows denotes no new inference or specific conclusion
can be drawn with regard to the consequent of the conditional sentence.

In order to elaborate on what it really means for a conditional sentence to have a
non-necessary antecedent and to propose a solution to the aforementioned problem,
we begin by considering the following DA inference tasks:

Example 1. If Maria is drinking alcoholic beverages in a pub, then Maria must be
over 19 years of age and Maria is not drinking alcoholic beverages in a pub.

Example 2. If the plants get water, then they will grow and the plants get no water.

Both of these examples appeared in the aforementioned experiment, and as was
the case for every conditional sentence that was included in it, accompanied by a
small background story. A curious reader may find the background stories for the
above conditionals in the Appendix. In the first example, 28 out of 56 participants
answered Maria is not over 19 years of age, whereas 25 answered nothing follows.
In this example the antecedent is non-necessary; it is not considered necessary for
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a person to drink alcohol in order for her to be older than 19. In fact, there are
many people who do not drink alcoholic beverages although they are over 19 years
of age. In the second example, 47 out of 56 participants answered the plants will
not grow whereas only 8 answered nothing follows. In this case, the antecedent is
necessary. Plants do not grow without water. Table 5 gives a complete account of
this experimental data.

Based on this observation, we propose an extension which allows the WCS to
account for the nothing follows answers. In Example 1, the existing framework of
the WCS creates a model where given that Maria is not drinking alcoholic beverages,
it can be concluded that Maria is not older than 19 years of age. With the proposed
extension, however, a counterexample that Maria is not drinking alcoholic beverages
and yet Maria is older than 19 years of age can be constructed. This leads to
an alternative model, which when compared to the former model and reasoned
sceptically, leads to the conclusion that it is unknown whether Maria is older than
19 years of age. In Example 2, the WCS creates a model where given that the plants
do not get water, it can be concluded that they will not grow. But in this case, a
counterexample does not readily exist.

The paper is organized as follows. Section 2 contains a discussion of some re-
lated work; the list, however, is not an exhaustive one. In Section 3 we formally
introduce the WCS. A classification of conditional sentences is given in Section 4
where we discuss how conditionals may be classified as obligational or factual, and
their antecedents as necessary or non-necessary. We discuss how pragmatics, culture
and other such factors may affect how different individuals comprehend the same
conditional sentence, and the different possibilities that arise from these comprehen-
sions (in a spirit similar to [22]). Furthermore, we present how the WCS can handle
the aforementioned classifications of conditionals. The experiment is described in
Section 5. We extend the WCS framework with the search for counterexamples in
Section 6. A motivation for modelling the DA inference task is given in Section 7
where we also revisit how the WCS currently models the AC and the DC inference
tasks. How the WCS can model the DA is presented in Section 8. This is followed
by Section 9 which contains a brief discussion about the predictions of the Mental
Model Theory (MMT) and the WCS with regard to the DA, AC and DC. Finally,
in Section 10 we conclude and outline possibilities for future research.

2 Related Work

The WCS framework, as the name suggests, utilizes the weak completion of logic
programs and in particular their least models in order to model human reasoning sce-
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narios. How logic programs may be weakly completed will be discussed in Section 3.
The weak completion of a program denoted by wc(P) differs from a program’s com-
pletion, comp(P), which involves the following transformation. Given a grounded
logic program, g(P),

1. All clauses with the same head such as A← body1, A← body2, . . . are replaced
by A↔ body1 ∨ body2 ∨ . . . in comp(P).

2. If an atom B is undefined in gP, i.e. there is no clause such as B ← body,
then comp(P) contains B ↔ ⊥.

For the moment the said difference between a program completion and weak com-
pletion can be illustrated using a simple example. Let P ′:

{a← ⊤, a← b, c← ⊥}.

wc(P ′) = {a↔ ⊤∨ b, c↔ ⊥}, whereas comp(P ′) = {a↔ ⊤∨ b, c↔ ⊥, b↔ ⊥}.
In [11] Melvin Fitting showed that the completion of a logic program admits a

least model under the three-valued Fitting logic, the semantics of which is showed in
Table 1. This least model can be computed as the least fixed point of the so-called
Fitting operator as follows. Given a program P and an interpretation I = ⟨I⊤, I⊥⟩,1
the Fitting operator computes positive immediate consequences in line with [1], by
mapping an atom A in the grounded program, g(P), to true if there exists a clause of
the form A← body in g(P) such that body is mapped to true under I. Additionally,
it maps a ground atom B to false if for all clauses of the form B ← body in g(P),
body has been mapped to false under I. This implies that even in cases when g(P)
does not contain a clause of the form B ← body, that is B is undefined in g(P), it
will be mapped to false by the Fitting operator.

The Fitting operator was modified by Keith Stenning and Michiel van Lambalgen
in [39]. The definition of this modified operator, ΦP , for a logic program P, will
be presented in Section 3. The difference between the two operators lies in the fact
that in case of the latter an atom B in g(P) is mapped to false if and only if there
exists a rule of the form B ← body, and for all rules of such form we find that
body has been mapped to false under the interpretation I. In [39] Stenning and
van Lambalgen share some important results of the modified operator, such as its
monotonicity and reaching a least fixed point when iterating the operator from the

1Interpretations are mappings from the set of formulas into the set {⊤, U, ⊥} where each truth
constant denotes true, unknown and false, respectively, such that the truth constants are mapped
onto themselves. Interpretations are represented by the two sets I⊤ and I⊥ consisting of the set of
all ground atoms which are mapped to true and false, respectively. The ground atoms not appearing
in the tuple are mapped to unknown.
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empty interpretation ⟨∅, ∅⟩. They also state that the least fixed point of the modified
operator can be shown to be a minimal model of a given program P under the Fitting
semantics shown in Table 1. However, the example that they use to illustrate the
point, namely a program P = {q ← p}, actually serves as a counter-example to the
claim. The reader may observe this when they consider the interpretation I = ⟨∅, ∅⟩
which is the least fixed point of ΦP but not a minimal model for P. This is because
under the Fitting semantics, I maps the clause q ← p to unknown. The minimal
models of P are instead ⟨{q}, ∅⟩ and ⟨∅, {p}⟩. Hence, a proposal to solve this problem
using Łukasiewicz logic was made in [17]. In particular as shown in [16, 28], the least
fixed point of the ΦP operator is equal to the least model of the weak completion of
a given program P under Łukasiewicz logic.

The inference tasks discussed in this paper, i.e. the AA, DA, AC and DC have
been modelled based on an experiment conducted with 56 participants, not formally
trained in logic; the details of which may be found in the Appendix. The insights
from the discussion further helps us understand how theories such as the well-known
Mental Model Theory (MMT) and the novel WCS compare to one another with
respect to this area of human reasoning. The idea of "mental models" is attributed
to psychologist Kenneth Craik’s work called "The Nature of Explanation" [6], in
which he uses the notions of physical internal models, probably akin to symbols
used in analog devices during that era, in order to discuss cognitive functions in a
human brain. He describes the so-called physical internal models as "My hypothesis
then is that thought models, or parallels, reality—that its essential feature is not
’the mind’, ’the self, ’sense data’, nor propositions but symbolism, and that this
symbolism is largely of the same kind as that which is familiar to us in mechanical
devices which aid thought and calculation". His arguments about the human brain’s
decision-making relying on internal models of the world, led to the inception of
the Mental Model Theory [25]. In his paper [24], Philip Johnson-Laird discusses

F ¬F

⊤ ⊥
⊥ ⊤
U U

∧ ⊤ U ⊥
⊤ ⊤ U ⊥
U U U ⊥
⊥ ⊥ ⊥ ⊥

∨ ⊤ U ⊥
⊤ ⊤ ⊤ ⊤
U ⊤ U U
⊥ ⊤ U ⊥

← ⊤ U ⊥
⊤ ⊤ ⊤ ⊤
U U U ⊤
⊥ ⊥ U ⊤

↔ ⊤ U ⊥
⊤ ⊤ ⊥ ⊥
U ⊥ ⊤ ⊥
⊥ ⊥ ⊥ ⊤

Table 1: The truth tables for Fitting logic. One should observe that U← U = U
and U↔ U = ⊤ as shown in the grey cells. Although this logic has already been
considered in [30], it has received much attention in the logic programming commu-
nity after the publication of Fitting’s paper [11]. Therefore, we refer to the logic
presented herein as Fitting logic.

125



Bhadra and Hölldobler

the notion of mental models based on how humans comprehend descriptions of the
world, based on their general knowledge, life experiences etc. On a similar note,
how mental models of the world are constructed based on what the human vision
perceives in front of it has been discussed by David Marr in [34]. Broadly speaking,
the MMT is an informal, cognitive theory based on the central idea that much of
human reasoning depends on mental models that the brain constructs based on the
perception or a description of the real world. Till date, it has discussed various areas
of human reasoning in terms of mental models; [26], [19], [24], [20], [23] to name a
few. In keeping with the theme of the current paper, some of the predictions of the
MMT with regard to the inference tasks will be discussed in Section 9.

Aside from the approaches discussed in this paper, there exist various others that
tackle the problems of conditional reasoning, such as [10]. In this paper, the authors
substitute the approach of classical logic with one where they instead formalize
inference patterns which can be deciphered from how reasonsers seem to apply or
refrain from apparent rules in their responses to the AA, DA, AC and DC inference
tasks. Using the formal model of plausibility relations based on preferential models
[33] and Ordinal Conditional Functions [36, 37], and the constraints imposed by the
aforementioned inference patterns on these plausibility relations, they evaluate the
rationality of the inference patterns and ultimately that of the individual inferences
of the reasoners.

3 The Weak Completion Semantics
We assume the reader to be familiar with logic and logic programming as presented
in e.g. [12] and [31]. Let ⊤, ⊥, and U be truth constants denoting true, false, and
unknown, respectively. A (logic) program is a finite set of clauses of the form B ←
body, where B is an atom and body is ⊤, or ⊥, or a finite, non-empty conjunction of
literals. Clauses of the form B ← ⊤, B ← ⊥, and B ← L1, . . . , Ln are called facts,
assumptions, and rules, respectively, where Li, 1 ≤ i ≤ n, are literals. We restrict
our attention to propositional programs although the WCS extends to first-order
programs as well [15].

Throughout this paper, P will denote a program. An atom B is defined in P if
and only if P contains a clause of the form B ← body. As an example consider the
program

P0 = {l← e ∧ ¬abe, abe ← ⊥},
where l, e, and ab are atoms. l and abe are defined, whereas e is undefined. ab is
an abnormality predicate which is assumed to be false. In the WCS, this program
represents the conditional sentence if A then C. In their everyday lives humans are
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often required to reason in situations where the information of all factors affecting
the situation might not be complete. They still reason, unless new information which
needs consideration comes to light. The abnormality predicate in the program serves
the purpose of this (default) assumption, as was suggested in [38].

Now, consider the following transformation:

1. For all defined atoms B occurring in P, replace all clauses of the form
B ← body1, B ← body2, . . . by B ← body1 ∨ body2 ∨ . . ..

2. Replace all occurrences of ← by ↔.

The resulting set of equivalences is called the weak completion of P, denoted by
wcP.2 It differs from the program completion defined in [5] in that atoms undefined
in a program are not mapped to false in its weak completion, but to unknown
instead. Weak completion is necessary for the WCS framework to adequately model
the suppression task (and other reasoning tasks) as demonstrated in [9]. As an
example of a program and its weak completion, let us reconsider P0, which has the
weak completion wcP0:

{l↔ e ∧ ¬abe, abe ↔ ⊥}.
Within the WCS framework, programs and their weak completions are inter-

preted under the three-valued Łukasiewicz logic [32] (see Table 2). Let P be a
program and I be a three-valued interpretation represented by the pair ⟨I⊤, I⊥⟩,
where I⊤ and I⊥ are the sets of atoms mapped to true and false by I, respec-
tively, and atoms which are not listed are mapped to unknown. I is a model
for P, in symbols I |= P, if and only if I maps each ground instance of each
clause in P to true. Furthermore, given an interpretation I, if I = ⟨I⊤, I⊥⟩ |= P
then I ′ = ⟨I⊤, ∅⟩ |= P. Given two interpretations I1 and I2, if ⟨I⊤

1 , ∅⟩ |= P and
⟨I⊤

2 , ∅⟩ |= P, then ⟨I⊤
1 ∩ I⊤

2 , ∅⟩ |= P. Importantly, the model intersection property
holds for P, i.e. ∩{I | I |= P} |= P; in other words, the intersection of all models for
P is (also) a model for P, where intersection of two models, such as I = ⟨I⊤, I⊥⟩ and
J = ⟨J⊤, J⊥⟩, is defined as ⟨I⊤ ∩ J⊤, I⊥ ∩ J⊥⟩. The aforementioned intersection of
all models gives us the least model of the program. The model intersection property
holds for the weak completion of P, wcP, as well. However, one should note that it
is not necessarily the case that the least model of wcP be the least model for P.

As shown in [16], each weakly completed program admits a least model under the
Łukasiewicz logic [32]. This model will be denoted byMwcP . It can be computed as
the least fixed point of a semantic operator introduced in [39]. Let P be a program

2Whenever we apply a unary operator like wc to an argument like P, we omit parenthesis and
write wcP instead.
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and I be a three-valued interpretation represented by the pair ⟨I⊤, I⊥⟩, where I⊤

and I⊥ are the sets of atoms mapped to true and false by I, respectively, and atoms
which are not listed are mapped to unknown. We define ΦP I = ⟨J⊤, J⊥⟩, where

J⊤ = {B | there is B ← body ∈ P and I body = ⊤},
J⊥ = {B | there is B ← body ∈ P and

for all B ← body ∈ P we find I body = ⊥}.

As an example of how such a model can be computed, let us consider the program,
P ′

0 = P0 ∪ {e← ⊤}. Starting with the interpretation ⟨∅, ∅⟩, we obtain,

ΦP ′
0
⟨∅, ∅⟩ = ⟨{e}, {abe}⟩,

ΦP ′
0
⟨{e}, {abe}⟩ = ⟨{e, l}, {abe}⟩ = ΦP ′

0
⟨{e, l}, {abe}⟩.

Here, ⟨{e, l}, {abe}⟩ is the least fixed point of ΦP ′
0

and it is also the least model
of wcP ′

0.
Following [27] we consider an abductive framework ⟨P,AP , IC, |=wcs⟩, where P is

a program, AP = {B ← ⊤ | B is undefined in P} ∪ {B ← ⊥ | B is undefined in P}
is the set of abducibles. IC is a finite set of integrity constraints which are expressions
of the form U← L1, . . . , Ln and ⊥ ← L1, . . . , Ln where each Li, 1 ≤ i ≤ n, is a
literal. And MwcP |=wcs F if and only if MwcP maps the formula F to true. Let
O be an observation, i.e. a finite set of literals each of which does not follow from
MwcP . We apply abduction to explain O, where O is called explainable in the
abductive framework ⟨P,AP , IC, |=wcs⟩ if and only if there exists a non-empty X ⊆
AP called an explanation such thatMwc(P∪X ) |=wcs L for all L ∈ O andMwc(P∪X )
satisfies IC. We have assumed that explanations are non-empty as otherwise the
observation already follows from the weak completion of the program. Formula F
follows credulously from P and O if and only if there exists an explanation X for O
such that Mwc(P∪X ) |=wcs F . F follows sceptically from P and O, if and only if O
can be explained and for all explanations X for O we find Mwc(P∪X ) |=wcs F . The
latter is an application of the so-called Gricean implicature [13]: humans normally

F ¬F

⊤ ⊥
⊥ ⊤
U U

∧ ⊤ U ⊥
⊤ ⊤ U ⊥
U U U ⊥
⊥ ⊥ ⊥ ⊥

∨ ⊤ U ⊥
⊤ ⊤ ⊤ ⊤
U ⊤ U U
⊥ ⊤ U ⊥

← ⊤ U ⊥
⊤ ⊤ ⊤ ⊤
U U ⊤ ⊤
⊥ ⊥ U ⊤

↔ ⊤ U ⊥
⊤ ⊤ U ⊥
U U ⊤ U
⊥ ⊥ U ⊤

Table 2: The truth tables for Łukasiewicz logic. One should observe that
U← U = U↔ U = ⊤ as shown in the grey cells.
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do not quantify over things which do not exist. Meaning, (unlike classical logic)
all explanations for an observation O may only be taken into account to sceptically
decide on a formula F , when O is explainable and these so-called explanations
exist in the first place. If a formula F does not follow sceptically from P and
O, we conclude nothing follows. Furthermore, one should also observe that if an
observation O cannot be explained, then nothing follows credulously as well as
sceptically. In all examples discussed in this paper the set of integrity constraints is
empty. Integrity constraints are not very relevant to the goal of this paper but they
are in other applications of the WCS like human disjunctive reasoning [14].

Given premises and general knowledge encoded as a logic program, and obser-
vations encoded as a finite set of ground literals, reasoning in the WCS is currently
modelled in five steps:

1. Reasoning towards a logic program P following [39].

2. Weakly completing the program, which leads to wcP.

3. Computing the least model MwcP of the weak completion of P, wcP, under
the three-valued Łukasiewicz logic.

4. Reasoning with respect to MwcP .

5. If observations cannot be explained, then applying sceptical abduction using
the specified set of abducibles.

In the following sections we will explain how these five steps work in the case of
the DA reasoning tasks considered in this paper. More examples can be found, for
example, in [9] or [35] or [14].

4 A Classification of Conditional Sentences
4.1 Obligational versus Factual Conditionals
Following [4], we call a conditional sentence an obligational conditional if the truth
of the consequent appears to be obligatory given that its antecedent is true. For
each obligational conditional there are two initial possibilities humans think about.
The first possibility is the conjunction of the antecedent and the consequent, which
is permitted. The second possibility is the conjunction of the antecedent and the
negation of the consequent, which is forbidden. Exceptions are possible but unlikely.
This can be exemplified by Example 1. In many countries the law demands that a
person may only drink alcohol publicly when they are above a certain age group (for
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example, 19 years). This implies that Maria is drinking alcoholic beverages in a pub
and she is older than 19 years is a permitted possibility, whereas Maria is drinking
alcoholic beverages in a pub and she is not older than 19 years is a forbidden one.
Hence, if Maria is drinking alcoholic beverages in a pub, then Maria must be over 19
years of age is an obligational conditional. In Example 2, plants getting water and
plants are growing is a permitted possibility. But plants getting water and plants
are not growing is also possible; there are many other factors, for example, over-
watering, lack of light, pest infestation, etc. which may hinder their growth. Hence,
if the plants get water, then they will grow, is not an obligational conditional.

Obligational conditionals may have different sources. They may be based on legal
laws like Example 1 and are often called deontic conditionals, in which case words like
must, should or ought may be explicitly used in the conditional sentence. Their usage
however, does not seem mandatory in everyday communication and is skipped on
many occasions. Knowledge or awareness that the consequent is obligatory given the
antecedent suffices in these cases, and yields the same responses as when explicitly
denoting the obligation. Obligational conditionals may also express moral or social
obligations like if somebody’s parents are elderly, then he/she should look after them
[4]. Other obligational conditionals are based on causal or physical laws which hold
on our planet like, if an object is not supported, then it will fall to the ground. In each
case the conjunction of the antecedent and the consequent is permitted, whereas the
conjunction of the antecedent and the negation of the consequent is forbidden.

On the other end of the spectrum, if the consequent of a conditional sentence
is not obligatory given the antecedent, then it is called a factual conditional. In
particular, the truth of the antecedent is inconsequential to that of the consequent;
that is (even) if the antecedent is true, the consequent may or may not be true. This
has already been exemplified using Example 2; the conditional if the plants get water,
then they will grow is a factual one. As another example consider the conditional
sentence if Maria is over 19 years, then she might drink alcoholic beverages in a
pub. This sentence is a factual one, because given the atomic proposition Maria is
over 19 years is true, one can imagine two permitted possibilities, one where Maria
drinks alcohol beverages and another where Maria does not drink alcoholic beverages
in a pub.

4.2 Necessary versus Non-Necessary Antecedents

As discussed in the previous sub-section, the obligational or factual nature of a condi-
tional sentence indicates if the consequent is obligatory or simply possible, provided
the antecedent is satisfied. The question that may naturally arise at this point is,
what happens when the antecedent of a conditional sentence is not satisfied? To
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that end, we now discuss the classifications of antecedents of conditional sentences.
The antecedent A of a conditional sentence if A then C is said to be necessary with
respect to the consequent C, if and only if C cannot be true unless A is true. This
implies that if A does not hold, C cannot either. In Example 2, plants get water is
a necessary antecedent for plants will grow. If a plant is not watered at all, it will
very likely die.

The above does not imply however, that the antecedent need always be a pre-
condition for the consequent, per se. The antecedent A of a conditional sentence
if A then C is said to be non-necessary with respect to the consequent C, if C can
be true irrespective of the truth or falsity of A. In particular this implies, if A does
not hold, C may or may not hold. In Example 1, the falsity of drinking alcoholic
beverages in a pub is inconsequential to the truth of the consequent older than 19
years. There are plenty of adults (over 19 years) who do not drink alcohol. The
antecedent of the conditional sentence if Maria is drinking alcoholic beverages in
a pub, then Maria must be over 19 years of age, in Example 1 is therefore called
non-necessary.

4.3 Pragmatics

Generally, humans may recognize conditional sentences as obligational or factual
and antecedents as necessary or non-necessary. This leads to an informal and prag-
matic classification of four kinds: obligational conditional with necessary antecedent
(ON) or non-necessary antecedent (ONN) and factual conditional with necessary
antecedent (FN) or non-necessary antecedent (FNN). For an abstract conditional
if A then C, without an everyday context, the classification of the conditional into
any of the aforementioned kinds would be straightforward and as discussed in Sub-
sections 4.1 and 4.2, since they are independent of context. The classification of
everyday conditionals (those with an everyday context), however, often depend on
pragmatics: the context, the background knowledge and experience of a person. For
example, the conditional sentence if it is cloudy, then it is raining discussed in [29]
may be classified as an obligational conditional with necessary antecedent by people
living in Java, whereas it may be classified as a factual conditional by people living
in Central Europe. In another example [22], the authors conducted an experiment,
where they categorized the proposition if it’s heated, then this butter will melt as
a bi-conditional. In particular they considered if butter is not heated, it will not
melt. This corresponds to a necessary antecedent in our setting. While some of
their participants also gave it the same classification, many considered it possible
that even if butter is not heated (intentionally), it may still melt. This implies that
they considered the antecedent to be non-necessary.
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4.4 Possibilities Arising from the Classifications of Conditional
Sentences

In their paper [22], dedicated to the MMT and the meanings of conditionals, the
authors discuss the notion of sets of possibilities arising from conditional sentences.
Simply put, given a conditional if A then C, how humans comprehend or understand
it depends on the following questions: what are the possibilities of C when A is
satisfied, and when A is not satisfied? This notion of possibilities was harnessed
for a detailed comparison between the MMT and the WCS in [2] and is not in the
scope of the present discussion. For our current purposes, we limit our attention to
characterizing the discussions in Subsections 4.1 and 4.2 using Table 3. It illustrates
the meanings of the classifications ON, ONN, FN and FNN in terms of possibilities
using the literals A, ¬A, C, and ¬C in lines with the MMT. For the moment, we
leave out the cases where any of the aforementioned literals may be unknown. The
sets of possibilities that an individual may use to characterize a conditional sentence
may differ from another individual, depending upon factors like pragmatics, culture,
context etc. as was discussed in Subsection 4.3.

4.5 Handling Classifications in the WCS

In the WCS framework, the classification of conditional sentences can be taken into
account by extending the definition of the set of abducibles to,

Ae
P = AP ∪ Ann

P ∪ Af
P ,

if A then C

ON ONN FN FNN
A C A C A C A C
¬A ¬C ¬A ¬C A ¬C A ¬C

¬A C ¬A ¬C ¬A ¬C
¬A C

Table 3: All possibilities of antecedent A and consequent C for each classification
of everyday conditional sentences, if A then C.
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where AP is as defined earlier in Section 3 and,

Ann
P = {C ← ⊤ | C is the head of a rule occurring in P representing a

conditional sentence with non-necessary antecedent},
Af

P = {ab ← ⊤ | ab occurs in the body of a rule occurring in P
representing a factual conditional}.

The set Ann
P contains facts for the consequents of conditional sentences with non-

necessary antecedents. As was mentioned earlier, if an antecedent of a conditional
sentence is non-necessary then the truth of the consequent does not depend on the
truth of the antecedent. The abducible C ← ⊤ therefore implies that there may be
other unknown reasons for establishing the consequent of the conditional sentence.

The set Af
P contains facts for the abnormality predicates occurring in the bodies

of the (logic program) representation of factual conditionals. Owing to the factual
nature of a conditional sentence, the antecedent of the conditional may be true,
however its consequent may not hold, due to various reasons which we might broadly
call abnormalities. As mentioned earlier, considerations of other plausible factors at
play might override our default assumption that these abnormalities are false. Once
we weakly complete our program, the abducible ab ← ⊤ shall cause the abnormality
predicate to become true and its negation to become false. Hence, the body of the
clause containing its negation will be false, causing the consequent to be false in
turn. This technique is used in [9] to represent an enabling relation and model,
for example, the suppression effect during the AA inference in the suppression task
[3]. The original task was as follows. Given, if she has an essay to write then she
will study late in the library, if the library is open then she will study late in the
library and she has an essay to write. Only 38% of the participants in the original
experiment had responded she will study late in the library. Although the percentage
of participants who responded otherwise was not revealed in the paper, it is plausible
that many considered that a library not being open prevents a person from studying
in it. This can be modelled using the abnormality predicate. Table 4 illustrates how
the set of abducibles can be extended for each classification.

5 An Experiment
In [7, 8] an experiment concerning conditional reasoning is described, where 56 log-
ically naive participants were tested on an online website (Prolific, prolific.co).
The participants were restricted to Central Europe and Great Britain as they were
assumed to have similar background knowledge about weather etc. It was also as-
sumed that the participants had not received any education in logic beyond high
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school training. During the experiment, the participants were presented with a story
followed by a first assertion (a conditional premise), and a second assertion (a pos-
sibly negated atomic premise). Finally for each problem they had to answer the
question “What follows?”. Both parts were presented simultaneously. The partic-
ipants responded by clicking one of the answer options. They could take as much
time as they needed and acted as their own controls.

The participants carried out 48 problems consisting of the 12 conditionals listed
in the Appendix and solved all four inference types (AA, DA, AC, DC). They could
select one of three responses: nothing follows, the fact that had not been presented
in the second premise, and the negation of this fact. For example in the case of the
DA, the first assertion was of the form if A then C, the second assertion was ¬A,
and they could answer C, ¬C, or nothing follows. It should also be mentioned that
the classification of the conditional sentences into the four aforementioned kinds,
such as obligational conditional with necessary antecedent, factual conditional with
non-necessary antecedent etc., was done by the authors of the experiment and not
revealed to the participants.

We can exemplify all that has been said above with the following short scenario
taken from the experiment: Peter has a lawn in front of his house. He is keen
to make sure that the grass on the lawn does not dry out, so whenever it has been
dry for multiple days, he turns on the sprinkler to water the lawn. Along with this
context the conditional sentence if it rains, then the lawn is wet and the negated
atomic proposition it does not rain were provided. The participants were given three
choices of answers: the lawn is wet, the lawn is not wet, and nothing follows.

As mentioned earlier, the WCS could well explain the findings of the experiment
in the cases AA, AC, and DC (see [7, 8]), but failed to explain the findings in the case
of DA. The data is shown in Table 5, where the total number of selected responses
as well as the median response time in milliseconds for ¬C (Mdn ¬C) and nothing
follows (Mdn nf ) responses are listed. Everyday contexts for the DA inference task
elicited a high response rate of about 78% (525 out of 672) for ¬C, but in case of

C ← A ∧ ¬ab non-necessary A necessary A

factual conditional ab ← ⊤, C ← ⊤ ab ← ⊤
obligational conditional C ← ⊤

Table 4: The additional facts in the set of abducibles for a rule of the form
C ← A ∧ ¬ab representing a conditional sentence if A then C.
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nothing follows the rate varied from 8% (14 out of 168) up to 33% (56 out of 168).
The number of participants answering C seems irrelevant. Until the present, the
WCS could predict the ¬C answered by the majority of the participants, but it could
not yet model the significant number of nothing follows responses. We now propose
a solution to the latter. Before we elaborate further, one might first observe that as
per the data nothing follows was answered much more often in case of conditional
sentences with non-necessary antecedents than in the case of conditional sentences
with necessary ones (30% vs. 8%, Wilcoxon signed rank, W = 0, p < .001). More
importantly, the reader may observe that when the classification of the antecedents
changed from necessary to non-necessary the number of ¬C responses decreased to
225 and nothing follows increased to (a significant) 101. The goal of this paper
is to extend the WCS in order to model this observed phenomenon.

6 Extending the WCS to Search for Counterexamples

As shown in Table 5 the majority of the participants always answered ¬C when
given the premises if A then C and ¬A. The classification of conditional sentences
seems irrelevant at this point. However, this general consensus is sometimes only
barely met. Indeed, some humans seem to be responding nothing follows during the
DA task. Upon a closer look at Table 5, the reader may observe that the number
of nothing follows responses increases when the classification of the antecedent of
the conditional changes from necessary to non-necessary. This is because unlike a
necessary antecedent, a non-necessary one makes room for counterexamples where
even if the antecedent does not hold, the consequent might still hold (that is ¬A and
C is possible). This observation hints at two reasoning patterns. The first, whom
we may term as a general reasoner, i.e. one who responds ¬C to any DA inference
task and does not deliberate upon it, and the second, the reasoner who does. The
latter, whom we may also call the careful reasoner searches for counterexamples
before drawing a definite conclusion such as ¬C, unlike the former who does not.
The said counterexamples in the DA task are possible when an individual deems the
antecedent to be non-necessary.

The aforementioned difference between the two kinds of reasoning patterns is
unfortunately not very noticeable if the so-called careful reasoner has deliberated
upon the problem but considered the antecedent to be necessary. In what follows, we
attempt to clarify this statement for the reader while also illustrating an approach
to model the general consensus of ¬C. For example, consider Example 2 ((8) in
Table 5), for which 47 participants responded ¬C while only 8 responded nothing
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follows. Assuming it is known that the plants do not get water we obtain the program

P1 = {g ← w ∧ ¬ab1, ab1 ← ⊥, w ← ⊥},

where g and w denote that the plants will grow and the plants get water, respectively,
and ab1 is an abnormality predicate which is implicitly assumed to be false. Weakly

Conditional/Classification C pct. ¬C pct. nf pct. Sum Mdn ¬C Mdn nf
(1) 0 45 11 56 2863 4901
(2) 2 54 0 56 3367 na
(3) 2 51 3 56 3647 10477
ON 4 2% 150 89% 14 8% 168 3292 7689
(4) 1 40 15 56 3722 7189
(5) 3 28 25 56 5735 7814
(6) 4 36 16 56 3602 6240
ONN 8 5% 104 62% 56 33% 168 4353 7081
(7) 2 51 3 56 3928 7273
(8) 1 47 8 56 3296 5728
(9) 1 52 3 56 3549 8735
FN 4 2% 150 89% 14 8% 168 3591 7245
(10) 1 39 16 56 3725 6874
(11) 0 41 15 56 3374 5887
(12) 1 41 14 56 3205 7002
FNN 2 1% 121 72% 45 27% 168 3435 6588
Obligational Conditional (O) 12 4% 254 76% 70 21% 336 3823 7385
Factual Conditional (F) 6 2% 271 81% 59 18% 336 3513 6917
Necessary Antecedent (N) 8 2% 300 89% 28 8% 336 3442 7467
Non-Necessary Antecedent (NN) 10 3% 225 67% 101 30% 336 3894 6835
Total 18 3% 525 78% 129 19% 672 3668 7151

Table 5: The results for DA inferences given a conditional sentence if A then C and a
negated atomic sentence ¬A. The grey lines show the numbers for the examples discussed
in the introduction. If the antecedent is non-necessary, then nothing follows (nf) is answered
significantly often (gray cells at the bottom). ON: obligational conditional with necessary
antecedent, ONN: obligational conditional with non-necessary antecedent, FN: factual con-
ditional with necessary antecedent, and FNN: factual conditional with non-necessary an-
tecedent. All percentages (pct.) have been rounded off to the nearest natural number for
the convenience of the reader.
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completing P1 we obtain:

{g ↔ w ∧ ¬ab1, ab1 ↔ ⊥, w ↔ ⊥},

whose least model is
MwcP1 = ⟨∅, {g, ab1, w}⟩,

where nothing is true, and g, ab1, and w are all false. Because the antecedent, the
plants get water (w), is generally considered to be necessary for the consequent,
plants will grow (g), the falsity of w allows us to falsify g. Hence, we conclude that
the plants will not grow. This is the general consensus for this particular example.
Please note that the authors of the experiment classified this conditional as FN, that
is, the antecedent as necessary. Although it is difficult to ascertain how humans
comprehend conditionals without inquiring of them, it is plausible that some careful
reasoners who deliberate upon this DA task may not find a counterexample where
the plants receive no water but they still grow, that is the possibility,

¬A C.

In other words, these reasoners comprehend the antecedent to be necessary for the
consequent and so conclude ¬C, much like the general reasoner. In such a case,
there seems to be no apparent way to distinguish between the general and the
careful reasoner.

Now we discuss the case of the non-necessary antecedent in the DA task where
the difference between the reasoning patterns is more pronounced, and how the WCS
may model the two. Let us reconsider Example 1 ((5) in Table 5) where 28 out of
56 participants answered ¬C, whereas 25 participants answered nothing follows.
Interestingly, the latter took more time in their response compared to the former.
For these 25 participants the antecedent of the conditional may plausibly have been
non-necessary for the consequent. That is upon deliberation, they may have been
able to construct a counterexample to the putative conclusion ¬C, where Maria is
not drinking alcoholic beverages in a pub but she may nevertheless be over 19 years
of age. Because Maria may simply abstain from alcohol.

Overall, the data in Table 5 suggests that the difference between the reasoning
patterns during a DA inference task becomes more apparent when the antecedent
of the conditional is taken to be non-necessary as it leads to the possibility of coun-
terexamples. In this paper we hence propose to model DA inferences by extending
the WCS with the addition of a sixth step to the procedure presented in Section 3:

1. Reasoning towards a logic program P following [39].
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2. Weakly completing the program, which leads to wcP.

3. Computing the least model MwcP of the weak completion of P, wcP, under
the three-valued Łukasiewicz logic.

4. Reasoning with respect to MwcP .

5. If observations cannot be explained, then applying sceptical abduction using
the specified set of abducibles.

6. Search for counterexamples.

The sixth step corresponds to the validation step in the Mental Model Theory [21] in
that alternative models falsifying a putative conclusion are searched for. Particularly
in the case of the DA task, ¬C may be considered as the putative conclusion gener-
ated due to steps 1 to 5. In the sixth step, using the extended set of abducibles Ae

P
illustrated in Sub-section 4.5, the extended procedure searches for models where ¬A
is true, but ¬C is not. If such models are found, then sceptical reasoning with re-
spect to all constructed models is applied. This will be illustrated and discussed in
more detail in the next section.

7 Motivation for the DA Inference Task
In order to discuss how the WCS along with its extension can model the general
consensus of ¬C in the DA task and also explain the significant number of nothing
follows answers in case of non-necessary antecedents, we return to Example 1 and
assume that Maria is not drinking alcoholic beverages in a pub. In the WCS this is
formalized by

P2 = {o← a ∧ ¬ab2, ab2 ← ⊥, a← ⊥},
where o and a denote that Maria is over 19 years old and she is drinking alcoholic
beverages, respectively, and ab2 is an abnormality predicate which is initially assumed
to be false. As the weak completion of P2 we obtain

{o↔ a ∧ ¬ab2, ab2 ↔ ⊥, a↔ ⊥},

whose least model is
MwcP2 = ⟨∅, {a, ab2, o}⟩.

Here, a, ab2, and o are all false.
A general reasoner following this approach will draw the conclusion Maria is not

over 19 years old and stop reasoning at this point. This accounts for the 28 ¬C
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responses for this particular conditional in our data. Overall it so appears that these
participants treated the conditional sentence as a bi-conditional, hence considering
only the possibilities corresponding to ON in Table 3, namely,

a o
¬a ¬o.

Classifying an antecedent as non-necessary however, would also allow the con-
sequent to be true despite the falsity of the former. In other words, recognizing
an antecedent as non-necessary, might allow humans to consider two possibilities:
Maria does not drink alcohol in a pub and she is younger than 19 years, and Maria
does not drink alcohol in a pub but she is older than 19. Meaning, these participants
did not treat the conditional sentence as a bi-conditional, but instead regarded the
possibilities,

a o
¬a ¬o
¬a o

corresponding to that of ONN in Table 3. That is, careful reasoners not only
consider the aforementioned model MwcP2 , where o is mapped to false, but also
search for a counterexample to ¬o. Investigating the third possibility listed above
may lead them to

⟨{o}, {a, ab2}⟩,
which is also a model for the program P2, but not a model for wcP2. The question
now stands, how can this (and similar) counterexamples in the DA in-
ference task be modelled by the WCS? We would like to motivate a plausible
answer to this by first turning our attention to how the WCS models the AC and
the DC inference tasks.

7.1 Modelling the AC Inference Task
To illustrate how the WCS models the AC inference task we reconsider the previously
discussed conditional sentence,

if Maria is drinking alcoholic beverages in a pub, then Maria must be
over 19 years of age

and the atomic premise,
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Maria is over 19 years of age.

Unlike the DA, in this case only the conditional premise is represented as a logic
program, that is,

P3 = {o← a ∧ ¬ab2, ab2 ← ⊥},
where o and a denote that Maria is over 19 years old and she is drinking alcoholic
beverages, respectively. ab2 is the abnormality predicate. The atomic premise, o, is
not considered as a fact because the program P3 already contains a definition of o and
the addition of the fact o← ⊤ would override this definition upon weak completion
thus not giving us much information about a. Therefore, o is considered as an
observation that needs to be explained. Meaning, we apply abduction. Because a
is undefined in P3 and the conditional sentence is classified as obligational with a
non-necessary antecedent, we obtain,

AP3 = {a← ⊤, a← ⊥} and Ae
P3 = AP3 ∪ {o← ⊤}

respectively. The set of integrity constraints is empty. Considering AP3 , the obser-
vation o is explained by the minimal explanation

{a← ⊤}. (1)

Adding this explanation to P3, weakly completing the extended program, and com-
puting its least model, a general reasoner obtains,

⟨{o, a}, {ab2}⟩ (2)

and concludes that Maria is drinking alcoholic beverages in a pub. However, a
careful reasoner additionally searching for counterexamples may discover a second
explanation to the observation, viz.

{o← ⊤} (3)

by considering Ae
P3 . Here, o being true signifies the possibility that Maria might still

be over 19 irrespective of whether she is drinking alcohol in a pub or not. Adding
such an explanation to P3, weakly completing the extended program, and computing
its least model the careful reasoner obtains,

⟨{o}, {ab2}⟩. (4)

Comparing the least models (2) where a is true and (4) where a is unknown, and
reasoning sceptically, a careful reasoner concludes nothing follows. We would like to
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point out to the reader that the explanations (1) and (3) are independent in that
neither is a subset nor a superset of the other.

To summarize, it appears that the general reasoner considers AP3 and concludes
that a and o hold. On the other hand, the careful reasoner considers Ae

P3 , investi-
gates counterexamples, reasons that although o holds a need not necessarily hold,
and finally concludes nothing follows. Table 6 in the Appendix illustrates the re-
sults for the AC task for all conditional sentences used in the experiment. Overall
as an investigation of the table would suggest, like in the DA, it is the (necessary or
non-necessary) type of the antecedent of the conditional which plausibly influences
the search for counterexamples. This is also supported by the time measured for
the conditional in the experiment (see (5) in Table 6), the answer a had a median
response time of 4704 ms, whereas the answer nothing follows had a median response
time of 6044 ms.

7.2 Modelling the DC Inference Task
Here we discuss how the WCS framework currently models the DC inference task.
For this purpose, let us consider the conditional sentence,

if Ron scores a goal, then he is happy

and the atomic sentence,

Ron is not happy.

The following program represents the conditional premise

P4 = {h← g ∧ ¬ab3, ab3 ← ⊥},

where g and h denote Ron scores a goal and Ron is happy, respectively, and ab3 is
an abnormality predicate. Here, ¬h is considered as an observation that needs to
be explained because the program P4 already contains a definition for h. Adding
h ← ⊥ to the program has no effect as it will be overridden once the program is
weakly completed. As g is undefined and the conditional sentence is classified as a
factual conditional with non-necessary antecedent, therefore,

AP4 = {g ← ⊤, g ← ⊥} and Ae
P4 = AP4 ∪ {h← ⊤, ab3 ← ⊤},

respectively. The set of integrity constraints is empty. Considering AP4 the obser-
vation ¬h is explained by the minimal explanation

{g ← ⊥}. (5)
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Adding this explanation to P4, weakly completing the extended program, and com-
puting its least model a general reasoner will obtain

⟨∅, {h, g, ab3}⟩ (6)

and conclude, that Ron does not score a goal. This is where most reasoners seem to
halt their reasoning. However, there may be some individuals who recognize the con-
ditional sentence as factual, meaning, they recognize that ¬h need not just be caused
or explained by ¬g. More precisely, a careful reasoner will recognize that h may be
false, even if g is not. Analogously, such a reasoner will search for counterexamples
to the putative conclusion ¬g, which can also explain ¬h. UsingAe

P4 ,

{ab3 ← ⊤} (7)

can be used as an another minimal explanation for ¬h. Here ab3 being true indicates
that Ron may have other reasons to be unhappy. Adding this abducible to P4 and
weakly completing the resulting extended program leads to the least model

⟨{ab3}, {h}⟩. (8)

As g is false in the first model (6) whereas unknown in the second, (8), sceptical
abduction is applied which leads to the conclusion, nothing follows. The overall
point of importance is that, aside from the falsity of g it is also possible to find other
reasons which can cause h to be false, and this leads to the consideration of more
than one model, which may lead humans to reason sceptically.

To summarize, we stipulate that in the above case the general reasoner considers
AP4 and concludes that given ¬h, ¬g holds, whereas a careful reasoner considers
Ae

P4 , finds a counterexample where ¬h holds and ¬g is unknown, and sceptically
concludes nothing follows. In case of the DC inference task it is the (obligational
or factual) type of the conditional which plausibly influences this said search for
counterexamples. Comparing the explanations (5) and (7) we find that they are
independent of each other. It must also be pointed out that the average time taken by
participants to respond ¬A, for this particular task (see (12) in Table 7), was 3726 ms
and that to respond nothing follows was 3813 ms, which are quite comparable.

8 Modelling the ¬C and Nothing Follows Responses in
the DA Task

In Subsections 7.1 and 7.2, when modelling the general consensus as well as the
nothing follows responses in the AC and DC inference tasks, the premise C and¬C

142



The Weak Completion Semantics and Counterexamples

are considered as observations, respectively. The nothing follows responses can be
accounted for by using the extended set of abducibles and applying sceptical ab-
duction in order to explain the observation. This may lead to models which act as
counterexamples to each other. On the other hand, when modelling the general con-
sensus for the DA, the atomic premise was a part of the logic program representation
of the premises, as illustrated in the beginning of Section 7.

We now propose that this negated premise be considered as an observation in-
stead, in a fashion similar to the AC and the DC modelling techniques. To illustrate
the proposal we reconsider the premises,

if Maria is drinking alcoholic beverages in a pub, then Maria must be
over 19 years of age

and,

Maria is not over 19 years of age.

In this revised proposal, the conditional premise is represented by

P5 = {o← a ∧ ¬ab2, ab2 ← ⊥},

where the meanings of the atomic predicates are unchanged. Now ¬a is considered as
an observation. As was also mentioned earlier, it is the (necessary or non-necessary)
type of the antecedent of the conditional which plausibly influences the search for
counterexamples in a DA task. Since this particular conditional sentence is classified
as obligational with non-necessary antecedent, we obtain,

AP5 = {a← ⊤, a← ⊥} and Ae
P5 = AP5 ∪ {o← ⊤}.

The set of integrity constraints is empty. Considering AP5 the observation is ex-
plained by the minimal explanation,

{a← ⊥}. (9)

The reader may note that adding this explanation to P5 leads to the program P2 in-
troduced at the beginning of Section 7. Again, weakly completing P2 and computing
its least model we obtain,

⟨∅, {o, ab2, a}⟩. (10)

Hence the conclusion is, that Maria is not older than 19 years of age. The data in
Table 5 suggests that many reasoners stop reasoning at this point, thereby treating
the conditional premise as a bi-conditional. Following this revised technique allows
us to model the general consensus or the general reasoner.
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Now we turn our attention to the careful reasoner, the one who searches for
counterexamples to the aforementioned conclusion and, in particular, considers Ae

P5 .
Such a reasoner may discover a second, non-minimal explanation to ¬a, viz.

{a← ⊥, o← ⊤}. (11)

This translates to the possibility that Maria is not drinking alcoholic beverages but
she is over 19 years of age. Adding this explanation to P5, weakly completing the
extended program, now leads us to the least model,

⟨{o}, {ab2, a}⟩. (12)

Comparing the least models (10) where o is false and (12) where o is true and
reasoning sceptically, one concludes nothing follows. Comparing the explanations (9)
and (11) we find

{a← ⊥} ⊂ {a← ⊥, o← ⊤},
meaning, the second explanation is a superset of the first.

To summarize, in a manner similar to the AC and DC, the second premise in
a DA reasoning task is considered as an observation which needs to be explained.
The general reasoner considers AP5 and concludes that given ¬a, ¬o holds. On the
other hand, a careful reasoner considers Ae

P5 , reasons that although ¬a holds, o may
nevertheless hold, and sceptically concludes nothing follows. This is also supported
by the time measured in the experiment as shown in Table 5 (see (5)). The answer ¬o
had a median response time of 5735 ms, whereas the answer nothing follows had a
median response time of 7814 ms.

9 A Brief Discussion about the Predictions of the
Mental Model Theory

The scope of the MMT is broad and has been applied to quite a few areas of human
reasoning to date. At present we restrict ourselves to a brief discussion of some
of the predictions of the MMT, as discussed by Philip Johnson-Laird and Ruth
Byrne, in their paper [22] in case of the inference tasks, DA, AC and DC. The MMT
suggests that in a DA task, given a conditional sentence if A then C and ¬A, humans
intuitively refrain from responding ¬C and favour nothing follows. It thus predicts
that when reasoners respond with ¬C, it is a result of deliberately comprehending
the conditional sentence as a bi-conditional, meaning the possibilities,
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A C
¬A ¬C.

However, in the case that a reasoner comprehends a conditional sentence as a
conditional, meaning the possibilities,

A C
¬A ¬C
¬A C

the reasoner refrains from the response of ¬C upon deliberation. Now, if the
nothing follows response in Table 5 is an intuitive one in comparison to the ¬C
responses, they should be quicker, that is take lesser time. But according to the
experimental data ¬C responses took 3668 ms on average while nothing follows
responses took 7151 ms. While the discussion about intuition and deliberation may
be reserved for a later occasion, the WCS predicts that most reasoners respond
with ¬C for everyday conditional sentences during a DA inference task. In this
case, most reasoners seem to (inherently) treat the antecedent of the conditional
sentence as necessary, hence responding how they would in case of a bi-conditional
sentence. Reasoners who upon deliberation have found a counterexample to the
putative conclusion of ¬A respond with nothing follows. This is the case, when these
reasoners have comprehended the antecedent to be non-necessary. As mentioned
in the beginning of Section 7, a non-necessary antecedent is one which allows the
possibilities,

¬A ¬C
¬A C.

A necessary antecedent on the other hand, disallows the latter. It must be
pointed out that this also suggests that even if a reasoner deliberately searches for
counterexamples to ¬C they will be unable to find one, if they have comprehended
the antecedent of the conditional as necessary.

The MMT predicts that in an AC task, given if A then C and C, most reasoners
intuitively respond with A. When reasoners deliberate they respond with nothing
follows in case they comprehend the conditional sentence as a conditional, meaning
the possibilities,
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A C
¬A ¬C
¬A C.

On the other hand, they stick to the putative response of A if they comprehend
the conditional as a bi-conditional, meaning the possibilities,

A C
¬A ¬C.

Like the MMT, the WCS also predicts that most reasoners will answer A in the
AC inference task. They seem to (inherently) treat the antecedents of conditional
sentences as necessary; thereby treating the sentence as a bi-conditional. Further-
more, it predicts that when individuals look for counterexamples to their putative
conclusion of A, they will sceptically respond nothing follows. In the search for coun-
terexamples, the necessary or non-necessary nature of the antecedent with respect
to the consequent seems to gain relevance, like in the DA task.

The MMT predicts that in the DC inference task, given if A then C and ¬C, most
reasoners generally respond nothing follows as a result of intuition, and reasoners
who respond ¬A do so as a result of deliberation. This implies that the response
nothing follows should be more rapid (take less time) than the response¬A. How-
ever, the data from Table 7 in the Appendix, suggests that the mean response time
for nothing follows responses is 5163 ms, whereas the mean response time for ¬A
responses is 4313 ms. The WCS on the other hand predicts that given an everyday
conditional sentence most individuals may conclude ¬A. The response may plausi-
bly be a result of the application of the modus tollens rule of inference as discussed
in [8]. Upon deliberation, the previously discussed factual nature of the conditional
may motivate the search for counterexamples which in turn may lead individuals to
respond nothing follows. This prediction is limited to everyday conditionals where
the antecedent and the consequent are related to each other to an acceptable or
believable degree. Conditionals such as if the sky is blue, then horses can speak
English, which may be considered bizarre, unacceptable or unbelievable are beyond
the scope of the present discussion. However, it must also be acknowledged that, as
Table 7 would tell the reader, the mean response time of 4558 ms for nothing follows
responses in case of factual conditionals is comparable to that of 4595 ms for ¬A
responses. But a closer inspection of the conditionals (7) to (12) classified as factual,
shows that in case of (8) and (11) nothing follows responses took longer than ¬A,
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whereas in case of (7) and (10) ¬A responses took longer than nothing follows. Con-
ditionals (9) and (12) had comparable response times. It must be pointed out that
it is plausible that each participant of the experiment might not have comprehended
each conditional like the authors did. For example the conditional (6), if it rains
then the lawn must be wet, had been classified as obligational by the authors but
there might have been individuals who had deemed it to be factual. The ¬A re-
sponse for this conditional had a median response time of 4062 ms, while the nothing
follows response had 5235 ms. Overall, this motivates further research in part of the
authors.

10 Conclusion

In this paper, we have discussed how the classification of conditional sentences and
their antecedents help gain an insight into how humans understand or comprehend
conditional sentences. On this basis, we have presented how the WCS along with
its proposed extension can adequately model the average and the careful human
reasoner in case of the DA inference task while also revisiting how the WCS can
model the AC and the DC inference tasks.

In case of the DA, although most reasoners seem to respond with ¬C, the (nec-
essary or non-necessary) type of the antecedent seems to be a relevant feature of
the conditional sentence when a reasoner deliberates upon the task. As suggested
by Philip Johnson-Laird in [18], given a set of premises, if one is beginning to form
a conclusion, one should believe or adopt the same only if they are able to find no
counterexamples strong enough to refute it. Table 5 in fact suggests that the rea-
soners responding nothing follows may actually be doing so, and such a response is
due to the presence of counterexamples to their putative conclusion of ¬C. In case
of the AC (like in the DA), reasoners who recognize the antecedent as non-necessary
respond with nothing follows. In case of the DC, it is possibly the obligational or
factual nature of the conditional sentence which is taken into consideration (see [8])
and reasoners with appropriate counterexamples respond nothing follows.

The case for the AA seems to be a ceiling effect, as an overwhelming majority
of the responses were C (640 out of 672). The data has been omitted from the
current discussion. Presently, it suffices to state that the WCS can well model this
majority which indicates the possibility that during the AA task the conditional
sentences were inherently taken to be obligational by most reasoners. This means,
when A was affirmed they simply concluded C, probably due to the application of
the modus ponens rule of inference. Nonetheless, although not significantly reflected
in the current data for the AA, we do recognize that in case of factual conditionals
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where even if A holds, C may or may not, a reasoner might choose to respond nothing
follows. Consider for example the conditional sentence, if it is Monday, then Rita
goes to school. Given the factual nature of the conditional it seems plausible that
sceptical reasoners may respond with nothing follows. WCS can also account for
these reasoners, but it is outside the present scope of discussion. We believe the
data at hand motivates further research about the AA and why humans accord with
the response C so easily.

Returning to the DA task on the other hand, if we were to deny the antecedent,
that is, it is not Monday, then although many reasoners might respond Rita does
not go to school, once again, WCS with the extension proposed in this paper can
account for such reasoners as well as those who choose to respond with scepticism
that nothing follows.

11 Appendix
11.1 Conditionals used in the Experiment with Classification3

Obligational Conditionals with Necessary Antecedent (ON)

(1) If it rains, then the roofs must be wet.
(2) If water in the cooking pot is heated over 99◦C, then the water starts boiling.
(3) If the wind is strong enough, then the sand is blowing over the dunes.

Obligational Conditionals with Non-Necessary Antecedent (ONN)

(4) If Paul rides a motorbike, then Paul must wear a helmet.
(5) If Maria is drinking alcoholic beverages in a pub, then Maria must be over 19
years

of age.
(6) If it rains, then the lawn must be wet.

Factual Conditionals with Necessary Antecedent (FN)

(7) If the library is open, then Sabrina is studying late in the library.
(8) If the plants get water, then they will grow.
(9) If my car’s start button is pushed, then the engine will start running.

3Note: The classification was done by the authors of [7, 8].
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Factual Conditionals with Non-Necessary Antecedent (FNN)

(10) If Nancy rides her motorbike, then Nancy goes to the mountains.
(11) If Lisa plays on the beach, then Lisa will get sunburned.
(12) If Ron scores a goal, then Ron is happy.

11.2 Short Background Story for Example 1
Maria and her friends are visiting a local pub to enjoy the evening with drinks and
good food. Maria knows the local rules and regulations and obeys them.

11.3 Short Background Story for Example 2
The Presleys have moved into their newly built house and have hired a gardener to
lay out the garden. They are sitting on their terrace and are looking at the bushes,
small trees, and shrubs which were planted by the gardener two months ago.
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11.4 Experiment Results for the AC Inference Task

Conditional/Classification A pct. ¬A pct. nf pct. Sum Mdn A Mdn nf
(1) 37 1 18 56 3952 7995
(2) 48 1 7 56 4003 4170
(3) 43 1 12 56 3458 9001
ON 128 76% 3 2% 37 22% 168 3804 7055
(4) 42 1 13 56 3659 8828
(5) 32 1 23 56 4704 6044
(6) 29 1 26 56 3593 4396
ONN 103 61% 3 2% 62 37% 168 3985 6423
(7) 51 1 4 56 3767 4397
(8) 42 1 13 56 3798 4565
(9) 45 1 10 56 3492 4598
FN 138 82% 3 2% 27 16% 168 3686 4520
(10) 34 2 20 56 5224 6289
(11) 29 2 25 56 3218 6205
(12) 33 1 22 56 3483 4992
FNN 96 57% 5 3% 67 40% 168 3975 5829
Obligational Conditional (O) 231 69% 6 2% 99 29% 336 3895 6739
Factual Conditional (F) 234 70% 8 2% 94 28% 336 3831 5175
Necessary Antecedent (N) 266 79% 6 2% 64 19% 336 3745 5788
Non-Necessary Antecedent (NN) 199 59% 8 2% 129 38% 336 3980 6126
Total 465 69% 14 2% 193 29% 672 3863 5957

Table 6: The results for AC inferences given a conditional sentence if A then C and an
atomic fact C. In case of factual conditionals, nf is answered significantly more often. ON:
obligational conditional with necessary antecedent, ONN: obligational conditional with non-
necessary antecedent, FN: factual conditional with necessary antecedent, and FNN: factual
conditional with non-necessary antecedent. All percentages (pct.) have been rounded off to
the nearest natural number for the convenience of the reader.
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11.5 Experiment Results for the DC Inference Task

Conditional/Classification A pct. ¬A pct. nf pct. Sum Mdn ¬A Mdn nf
(1) 1 2% 45 80% 10 18% 56 3449 4758
(2) 0 0% 50 89% 6 11% 56 4058 7922
(3) 2 4% 46 82% 8 14% 56 3796 4517
ON 3 2% 141 84% 24 14% 168 3768 5732
(4) 3 5% 46 82% 7 13% 56 3872 4154
(5) 1 2% 54 96% 1 2% 56 4946 8020
(6) 0 0% 36 64% 20 36% 56 4062 5235
ONN 4 2% 136 81% 28 17% 168 4293 5803
(7) 1 2% 37 66% 18 32% 56 5974 4744
(8) 3 5% 42 75% 11 20% 56 4367 5013
(9) 0 0% 47 84% 9 16% 56 4208 3966
FN 4 2% 126 75% 38 23% 168 4850 4574
(10) 2 4% 35 63% 19 34% 56 4879 4167
(11) 0 0% 39 70% 17 30% 56 4411 5647
(12) 0 0% 34 61% 22 39% 56 3726 3813
FNN 2 1% 108 64% 58 35% 168 4339 4542
Obligational Conditional (O) 7 2% 277 82% 52 15% 336 4031 5768
Factual Conditional (F) 6 2% 234 70% 96 29% 336 4595 4558
Necessary Antecedent (N) 7 2% 267 79% 62 18% 336 4309 5153
Non-Necessary Antecedent (NN) 6 2% 244 73% 86 26% 336 4316 5173
Total 13 2% 511 76% 148 22% 672 4313 5163

Table 7: The results for DC inferences given a conditional sentence if A then C and a negated
atomic fact ¬C. In case of factual conditionals, nf is answered significantly more often. ON:
obligational conditional with necessary antecedent, ONN: obligational conditional with non-
necessary antecedent, FN: factual conditional with necessary antecedent, and FNN: factual
conditional with non-necessary antecedent. All percentages (pct.) have been rounded off to
the nearest natural number for the convenience of the reader.
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Abstract

Ranking functions, also called ordinal conditional functions (OCFs), and to-
tal preorders on worlds (TPOs) are two common models for epistemic states
that can represent conditional beliefs. To explore the connection between these
frameworks, we consider mappings among TPOs and OCFs, i.e., the models
of both frameworks. We formalize this kind of mappings as epistemic state
mappings. Furthermore, we introduce postulates concerning the preservation
of notable properties under the application of these mappings; a prominent
example of such a property is syntax splitting. Other postulates regard the
compatibility with operations like marginalization and conditionalization. We
evaluate the interrelationships among the postulates for epistemic state map-
pings within and across the two frameworks, establishing dependencies as well
as incompatibilities among postulates. Our results will be useful in particular
for transferring methods and tools developed for OCF-based semantics to the
TPO framework and the other way around.

1 Introduction
In the field of knowledge representation, there is a long tradition of employing con-
ditionals as fundamental objects. A conditional formalizes a defeasible rule “If A
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then usually B” for logical formulas A, B and is often denoted as (B|A). As condi-
tional logic is more expressive than propositional logic, it requires a richer semantics
as well. There are different approaches to the semantics for conditional logic, e.g.,
[27, 1, 24, 29, 10, 6, 18]. These approaches often use either some form of ranking
functions [33] or total preorders on interpretations as models for conditionals and
conditional knowledge bases.

Both kinds of models, ranking functions (or ordinal conditional functions, OCFs)
and total preorders on worlds (TPOs) have their own advantages. TPOs are fun-
damental for nonmonotonic logics and are used, e.g., in AGM revision [2] or the
characterization of system P [1, 24]. OCFs are convenient implementations of TPOs
that crucially provide the arithmetic that is lacking in TPOs. This arithmetic allows
in particular for a more sophisticated conditional reasoning, approximating nicely
what is possible in probabilistics. More specifically, TPOs are used in representation
theorems for AGM revisions [17] and contractions [7] as well as system P inference
[1, 24]. OCFs enable modelling the strength of conditional beliefs by assigning num-
bers to logical interpretations [33, 12]. Furthermore, some belief revision operators
with interesting properties have been defined for OCFs, see e.g., c-changes [18]. To
better understand the connection between OCFs and TPOs and to combine frame-
works using these models, we investigate transformations among these frameworks,
i.e., functions that map OCFs to TPOs or TPOs to OCFs, and as a generalization,
we also take transformations from OCFs to OCFs and TPOs to TPOs into account.

By studying mappings between TPOs and OCFs and their properties, we expect
insights that allow us to better transfer methods and tools developed for one of the
frameworks to the other framework. E.g., the online system InfOCF-Web [26] and
its underlying software library InfOCF-Lib [25] are currently capable of reasoning
with ranking functions; it will be useful to extend them to cover reasoning with
total preorders as well. Our results are also beneficial for a better connection of the
postulates regarding syntax splitting in reasoning and belief revision on the different
frameworks. An example of a successful transfer of a property for belief revision from
one framework to another that has been made in the past is the definition of QPCP
(qualitative principle of conditional preservation) for revisions of TPOs based on
PCP (principle of conditional preservation) for the revision of OCFs [18, 19, 21].

Transferring belief change operations from one framework to the other framework
is another possible application of this work. An approach to transferring operators
across frameworks is to transfer an epistemic state of one kind (e.g. a TPO) into an
epistemic state of the other kind (e.g. an OCF) and applying the operator in the
new framework. This requires that the transformation conserves the properties of
the epistemic state relevant to the operator.

We formalize functions on these models within and across the two different frame-
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works as epistemic state mappings and propose postulates that govern epistemic
state mappings. The postulates require the epistemic state mappings to preserve
certain properties of the models like the entailed inference relation and syntax split-
tings. Syntax splitting is a concept describing that beliefs about different parts of
the signature are uncorrelated [28, 30]; it is used in postulates requiring that un-
correlated parts of the beliefs should be processed independently in revision and
reasoning, see for example [28, 30, 22, 20]. Other postulates for epistemic state
mappings ensure compatibility with the operations marginalization and condition-
alization. These operations are relevant, e.g., for some forms of forgetting [9, 11, 5],
syntax splitting, and certain aspects of belief revision [20, 31].

We investigate relationships among our postulates in general as well as for each
framework in particular. Our results elaborate dependencies among the postulates,
and they also unveil situations where certain combinations of postulates cannot be
satisfied simultaneously. Especially for epistemic state mappings from TPOs to
OCFs, there are several combinations of postulates that cannot be fulfilled simul-
taneously. Using the notion of coherence [23] we formulate weaker versions of our
postulates that can be fulfilled at the same time.

In summary, the main contributions of this article are:
• Introduction of epistemic state mappings among TPOs and OCFs

• Coverage of marginalization and conditionalization also for the iterated case
via the introduction of restricted TPOs and restricted OCFs

• Formalization of desirable properties of epistemic state mappings in terms of
general postulates

• Establishment of relationships among the postulates and of realizability results
for the postulates and for subsets thereof

• Postulates for epistemic state mappings from TPOs to OCFs based on the
notion of coherence.

This article revises and extends our workshop submissions [13] and [15] and is
structured as follows. After giving some background on conditional logic in Sec-
tion 2, we introduce the operations marginalization and conditionalization and the
property syntax splitting in Section 3. We introduce the concept of epistemic state
mappings and postulates for such mappings in Section 4, and analyse the relationship
among the postulates for different kinds of epistemic state mappings in Section 5. In
Section 6 we propose weaker postulates based on coherence and show an epistemic
state mapping fulfilling these postulates. In Section 7, we conclude and point out
future work.
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2 Background: Conditional Logic, Ranking Functions,
and Total Preorders

A (propositional) signature is a finite set Σ of identifiers. For a signature Σ, we
denote the propositional language over Σ by LΣ. Usually, we denote elements of
the signatures with lowercase letters a, b, c, . . . and formulas with uppercase letters
A, B, C, . . .. We may denote a conjunction A∧B by AB and a negation ¬A by A for
brevity of notation. As usual, ⊤ denotes a tautology and ⊥ an unsatisfiable formula.
The set of interpretations over a signature Σ is denoted as ΩΣ. Interpretations are
also called worlds and ΩΣ is called the universe. An interpretation ω ∈ ΩΣ is a model
of a formula A ∈ LΣ if A holds in ω. This is denoted as ω |= A. The set of models
of a formula (over a signature Σ) is denoted as Mod Σ(A) = {ω ∈ ΩΣ | ω |= A}.
A formula A entails a formula B, denoted by A |= B, if Mod Σ(A) ⊆ Mod Σ(B).
We will represent interpretations (or worlds) by complete conjunctions, e.g., the
interpretation over Σabc = {a, b, c} that maps a and c to true and b to false is
represented by a ∧ ¬b ∧ c, or just abc. Thus, every world ω ∈ ΩΣ is also a formula
in LΣ.

A conditional (B|A) connects two formulas A, B and represents the rule “If A
then usually B”. For a conditional (B|A), the formula A is called the antecedent
and the formula B the consequent of the conditional. The conditional language
over a signature Σ is denoted as (L|L)Σ = {(B|A) | A, B ∈ LΣ}. (L|L)Σ is a
flat conditional language as it does not allow nesting conditionals. A finite set of
conditionals is called a conditional belief base. We use a three-valued semantics of
conditionals in this paper [8]. For a world ω, a conditional (B|A) is either verified
by ω if ω |= AB, falsified by ω if ω |= AB, or not applicable to ω if ω |= A.

Conditionals are usually considered in the context of epistemic states. An epis-
temic state is a structure that represents all beliefs that are relevant for an agent’s
reasoning. There exist different kinds of models for epistemic states that can handle
conditionals. Two approaches to this are ranking functions and total preorders on
possible worlds.

A ranking function, also called ordinal conditional function (OCF), is a function
κ : ΩΣ → N0 such that κ−1(0) ̸= ∅; ranking functions were first introduced (in a
more general form) by Spohn [33]. The intuition of a ranking function is that the
rank of a world is lower if the world is more plausible. Therefore, ranking functions
can be seen as some kind of “implausibility measure”. For a ranking function κ
and a set X of worlds, minω∈Mod(X) κ(ω) denotes the minimal rank κ(ω) among the
worlds ω ∈ X; for empty sets we define minω∈∅ κ(ω) = ∞. Ranking functions are
extended to formulas by κ(A) = minω∈Mod(A) κ(ω). A ranking function κ models a
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conditional (B|A), denoted as κ |= (B|A), if κ(AB) < κ(AB), i.e., if the verification
of the conditional is strictly more plausible than its falsification. A ranking function
κ models a conditional belief base R, denoted as κ |= R if κ |= r for every r ∈ R.
The uniform ranking function κuni with κuni(ω) = 0 for every ω ∈ ΩΣ represents the
state where every possible world is equally plausible.

A total preorder (TPO) is a total, reflexive, and transitive binary relation. The
meaning of a total preorder ⪯ on ΩΣ as model for an epistemic state is that if
ω1 ⪯ ω2 then ω1 is at least as plausible as ω2 for ω1, ω2 ∈ ΩΣ. The strict version
of a TPO ⪯ is the relation ≺ defined by ω1 ≺ ω2 iff ω1 ⪯ ω2 and ω2 ̸⪯ ω1. For a
TPO ⪯ and a set X of worlds, min(X, ⪯) denotes the set of minimal worlds in X
with respect to ⪯. Total preorders on worlds are extended to formulas A, B ∈ LΣ
by defining A ⪯ B iff there is an ω1 ∈ Mod Σ(A) such that for every ω2 ∈ Mod Σ(B)
it holds that ω1 ⪯ ω2. A total preorder ⪯ models a conditional (B|A), denoted as
⪯ |= (B|A), if AB ≺ AB, i.e., if the verification of the conditional is strictly more
plausible than its falsification. A total preorder ⪯ models a conditional belief base
R, denoted as ⪯ |= R if ⪯ |= (B|A) for every (B|A) ∈ R.

The normalization requirement κ−1(0) ̸= ∅ for ranking functions ensures that the
minimal worlds in a ranking function have rank 0. Therefore, worlds with rank 0 in a
ranking function correspond to the minimal worlds in a total preorder: these worlds
are the most plausible worlds in the epistemic state and determine the unconditional
beliefs in this state. Such a normalization is not possible for total preorders; but it
is also not necessary because their semantics use minimal worlds instead of worlds
with rank 0.

While the definition of ranking functions used here does not allow for worlds to
have rank ∞, all concepts and theorems developed in this article can be extended
to cover also epistemic state representations comprising pieces of strict knowledge,
i.e., representations where some worlds are considered to be impossible. The rank
∞ could be used to mark worlds that are impossible in OCFs; correspondingly, a
set of worlds could be marked impossible in epistemic states based on TPOs.

Both ranking functions and total preorders each induce a total preorder on their
domain. For a total preorder ⪯ the induced order ⋖−⪯ is the order ⪯ itself, i.e.,
⋖−⪯ = ⪯. For a ranking function κ, the induced ordering ⋖−κ

is given by ω1 ⋖−κ
ω2

iff κ(ω1) ⩽ κ(ω2) for ω1, ω2 ∈ ΩΣ.

3 Marginalization, Conditionalization, Syntax Splitting

We want to consider transformations among models of epistemic states represented
by ranking functions or total preorders. To establish a notation for the domain of
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such transformations, we use the sets
MTPO(Σ) = {⪯ ⊆ ΩΣ × ΩΣ | ⪯ is a total preorder over ΩΣ} (1)
MOCF (Σ) = {κ : ΩΣ → N0 | κ is a ranking function} (2)

containing all models over a certain signature Σ.
Marginalization and conditionalization are two basic operations in commonsense

reasoning because they help intelligent agents to abstract from irrelevant features
(marginalization) and focus on specific contexts (conditionalization). Technically,
both operations help cutting down the complexity of reasoning and revision since
they allow focusing on parts of the epistemic state.

Marginalization realizes focusing on certain signature elements; it is essential to,
e.g., syntax splitting for epistemic states [22]. Conditionalization corresponds to
focusing on a certain context or case [4]; it has applications, e.g., in belief revision
and for ranking kinematics [31, 23, 32]. Both operations allow for concentrating on
relevant parts of the beliefs, but in epistemically and technically different ways.

3.1 Marginalization
We start with defining marginalization in an abstract way.
Definition 1 (marginalization of ranking functions [33, 3]). The marginalization
of ranking functions from a signature Σ to a sub-signature Σ′ ⊆ Σ is a function
MOCF (Σ) → MOCF (Σ′), κ 7→ κ|Σ′ such that κ|Σ′(ω) = κ(ω) for ω ∈ ΩΣ′.
Definition 2 (marginalization of total preorders [3, 22]). The marginalization of
total preorders from signature Σ to a sub-signature Σ′ ⊆ Σ is a function MTPO(Σ) →
MTPO(Σ′), ⪯ 7→ ⪯|Σ′ such that ω1 ⪯|Σ′ ω2 iff ω1 ⪯ ω2 for ω1, ω2 ∈ ΩΣ′.

The marginalizations of OCFs and TPOs presented above are special cases of
general forgetful functors Mod(ϱ) from Σ-models to Σ′-models given in [3] where
Σ′ ⊆ Σ and ϱ : Σ′ ↪→ Σ is the inclusion from Σ′ to Σ. Informally, a forgetful functor
forgets everything about the interpretation of the symbols in Σ \ Σ′ when mapping
a Σ-model to a Σ′-model.

Marginalization can also be defined on formulas.
Definition 3 (marginalization of formulas). Let Σ be a signature, A ∈ LΣ, and
Σ′ ⊆ Σ. For a world ω ∈ ΩΣ let ωΣ′ ∈ ΩΣ′ be the assignment of truth values to
variables in Σ′ as in ω. A formula A′ ∈ LΣ′ is a marginalization of A to Σ′ if
Mod Σ′(A′) = {ωΣ′ | ω ∈ Mod Σ(A)}.

If A′ and A′′ are marginalizations of A then A′ ≡ A′′. Thus, all marginalizations
of A to Σ′ are equivalent and we use A|Σ′ to denote an arbitrary marginalization of
A in situations where the specific syntax of the marginalization is not relevant.
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3.2 Conditionalization
Conditionalization restricts the set of worlds that are considered in an epistemic
state. After the conditionalization with a formula A, the resulting state only con-
siders the worlds in Mod Σ(A) as possible worlds.

A conditionalization of OCFs was already introduced in [33], in analogy to prob-
ability theory. Both OCFs and probabilities make use of arithmetic operations to
realize conditionalization; this, however, is also necessary because of the normaliza-
tion condition which is not present for TPOs. Using tight transformations between
TPOs and OCFs allows for transferring basic properties of OCF conditionalization
and its arithmetics to the qualitative framework of OCFs. This helps elaborating
non-numerical characteristics of conditionalization as a basic epistemic operation.

A notion of conditionalization for TPOs where the models of A are shifted to
the uppermost layer has been introduced in [20]. Here, we will use the concept of
conditionalization where the models of A are removed entirely from the epistemic
state. To capture the outcome of such conditionalizations, we introduce the notions
of restricted OCFs and TPOs.

Definition 4 (restricted OCF/TPO). Let M ⊆ ΩΣ be a set of worlds. A function
κ : M → N0 such that κ−1(0) ̸= ∅ is a restricted ranking function. A TPO ⪯ on M
is called a restricted total preorder.

Restricted ranking functions are extended to formulas by

κ(A) = min ω∈(Mod Σ(A)∩M)κ(ω).

Restricted total preorders on worlds are extended to formulas by A ⪯ B iff there is
an ω1 ∈ Mod Σ(A) ∩ M such that for every ω2 ∈ min(Mod Σ(B) ∩ M) it holds that
ω1 ⪯ ω2.

The intuition of restricted OCFs and TPOs is the same as for OCFs and TPOs:
Worlds with lower rank or position in the ordering are more plausible. For a signature
Σ and a formula A ∈ LΣ we define the set of restricted states

MTPO(Σ, A) = {⪯ ⊆ Mod Σ(A) × Mod Σ(A) | ⪯ total preorder over Mod Σ(A)}
(3)

MOCF (Σ, A) = {κ : Mod Σ(A) → N0 | κ ranking function}. (4)

The sets of restricted OCFs and TPOs properly include the sets of (unrestricted)
OCFs and TPOs as given in (1) and (2) because MI(Σ) = MI(Σ, ⊤) for I ∈
{TPO, OCF}. For a state Ψ ∈ MI(Σ, A), we call sig(Ψ) = Σ the signature of Ψ
and dom(Ψ) = Mod Σ(A) the domain of Ψ. Using the concept of restricted OCFs,
the coditionalization of OCFs adapted to our setting is the following.
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Definition 5 (conditionalization of ranking functions [33, 31]). The conditionaliza-
tion of ranking functions over a signature Σ to the models of a formula A ∈ LΣ is a
function MOCF (Σ) → MOCF (Σ, A), κ 7→ κ|A such that κ|A(ω) = κ(ω) − κ(A) for
ω ∈ Mod Σ(A).

Likewise, we define conditionalization for TPOs such that the models of A are
removed entirely from the TPO.

Definition 6 (conditionalization of total preorders). The conditionalization of total
preorders over a signature Σ to the models of a formula A ∈ LΣ is a function
MTPO(Σ) → MTPO(Σ, A), ⪯ 7→ ⪯|A such that ω1 (⪯|A) ω2 iff ω1 ⪯ ω2 for
ω1, ω2 ∈ Mod Σ(A).

Note that Definitions 5 and 6 for conditionalization integrate nicely with our
notions of restricted TPOs and restricted OCFs, because models of A occur neither
in the elements of MOCF (Σ, A) nor MTPO(Σ, A).

3.3 Marginalization and Conditionalization on Restricted States
While originally, both marginalization and conditionalization were defined on OCFs
and TPOs with the full set of Σ-models, we will also consider the iterative application
of these operations. Therefore, we extend the definitions of these operations to cover
already conditionalized states, which are restricted TPOs and OCFs.

Definition 7 (marginalization of restricted OCFs/TPOs). Let Σ be a signature,
A ∈ LΣ, and Σ′ ⊆ Σ. The marginalization of restricted ranking functions over
Mod Σ(A) from Σ to Σ′ is a function MOCF (Σ, A) → MOCF (Σ′, A|Σ′), κ 7→ κ|Σ′

such that κ|Σ(ω) = κ(ω) for ω ∈ Mod Σ′(A|Σ′).
The marginalization of restricted total preorders over Mod Σ(A) from Σ to Σ′

is a function MTPO(Σ, A) → MTPO(Σ′, A|Σ′), ⪯ 7→ ⪯|Σ′ such that ω1 ⪯|Σ′ ω2 iff
ω1 ⪯ ω2 for ω1, ω2 ∈ Mod Σ′(A|Σ′).

For ranking functions, the rank of a formula is not affected by marginalization
if the formula only uses signature elements from the remaining subsignature.

Lemma 1. Let κ be a (restricted) ranking function over ΩΣ and A be a formula
over Σ′ ⊆ Σ. Then κ(A) = κ|Σ′(A).

Definition 8 (conditionalization of restricted OCFs/TPOs). Let Σ be a signature
and A, B be formulas in LΣ. The conditionalization of restricted ranking functions
over Mod Σ(B) to the models of A is a function MOCF (Σ, B) → MOCF (Σ, A ∧
B), κ 7→ κ|A such that κ|A(ω) = κ(ω) − κ(A) for ω ∈ Mod Σ(A ∧ B).
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(a) A restricted OCF κ with the
syntax splitting {{a}, {b, c}}.
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(b) Marginaliza-
tion κ|{a} of κ.
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(c) Conditionaliza-
tion κ|{ac} of κ.

Figure 1: Example for syntax splitting, marginalization, and conditionalization on
restricted OCFs.

The conditionalization of restricted total preorders over Mod Σ(B) to the models
of A is a function MTPO(Σ, B) → MTPO(Σ, A∧B), ⪯ 7→ ⪯|A such that ω1 ⪯|A ω2
iff ω1 ⪯ ω2 for ω1, ω2 ∈ Mod Σ(A ∧ B).

For MI(Σ, ⊤), the marginalization/conditionalization of the restricted OCFs/T-
POs coincides with the marginalization/conditionalization of OCFs/TPOs. Thus,
Definitions 7 and 8 of marginalization and conditionalization properly cover and
extend the Definitions 1, 2, 5, and 6.

Example 1. Consider the restricted ranking function κ in Figure 1a. The marginal-
isation κ|{a} of κ is shown in Figure 1b and the conditionalization κ|a of κ is shown
in Figure 1c.

3.4 Syntax Splitting for Epistemic States
An interesting feature of ranking functions and total preorders is the existence of
syntax splittings. Syntax splittings were first introduced as a property of belief sets
by Parikh [28]. Informally, the meaning of a belief set having a syntax splitting is
that the belief set contains independent information over different parts of the signa-
ture. The partition of the signature in these parts is called a syntax splitting for the
considered belief set. Syntax splittings are useful properties as they indicate that
different parts of the belief state should be processed independently of each other.
This can be used to formulate postulates for sensible reasoning and revision oper-
ators. Additionally, splitting belief states and processing their parts independently
can make operations computationally more efficient.

The notion of syntax splitting was extended to other representations of epistemic
states such as TPOs and OCFs in [22]. For a partitioning {Σ1, . . . , Σn} of a signature
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Σ and a world ω ∈ ΩΣ, let the world ωi ∈ ΩΣi denote the variable assignment of
the variables in Σi as in ω in the following definitions. Let the world ω ̸=i ∈ ΩΣ\Σi

denote the variable assignment of the variables in Σ \ Σi as in ω.

Definition 9 (syntax splitting for total preorders [22]). Let ⪯ be a total preorder
over a signature Σ. A partitioning {Σ1, . . . , Σn} of Σ is a syntax splitting for ⪯ if,
for i = 1, . . . , n,

ω ̸=i
1 = ω ̸=i

2 implies
(
ω1 ⪯ ω2 iff ωi

1 ⪯|Σi
ωi

2
)
.

Definition 10 (syntax splitting for ranking functions [22]). Let κ be a ranking
function over Σ. A partitioning {Σ1, . . . , Σn} of Σ is a syntax splitting for κ if
there are ranking functions κi : Σi → N0 ∪ {∞} for i = 1, . . . , n such that κ(ω) =
κ1(ω1) + · · · + κn(ωn). This is denoted as κ = κ1 ⊕ · · · ⊕ κn.

The notion of syntax splitting can be extended to restricted OCFs and TPOs.

Definition 11 (syntax splitting for restricted TPOs). Let A ∈ LΣ be a formula and
⪯ be a restricted total preorder in MTPO(Σ, A). A partitioning {Σ1, . . . , Σn} of Σ
is a syntax splitting for ⪯ if

• there are formulas A1, . . . , An such that A ≡ A1 ∧ · · · ∧ An and Ai ∈ LΣi for
i = 1, . . . , n

• and, for i = 1, . . . , n and ω1, ω2 ∈ dom(⪯),

ω ̸=i
1 = ω ̸=i

2 implies
(
ω1 ⪯ ω2 iff ωi

1 ⪯|Σi
ωi

2
)
.

Definition 12 (syntax splitting for restricted OCFs). Let A ∈ LΣ be a formula and
κ be a restricted ranking function in MOCF (Σ, A). A partitioning {Σ1, . . . , Σn} of
Σ is a syntax splitting for κ if

• there are formulas A1, . . . , An such that A ≡ A1 ∧ · · · ∧ An and Ai ∈ LΣi for
i = 1, . . . , n

• and there are ranking functions κi ∈ MOCF (Σi, Ai) for i = 1, . . . , n such that
κ(ω) = κ1(ω1) + · · · + κn(ωn) for ω ∈ dom(κ).

This is denoted as κ = κ1 ⊕ · · · ⊕ κn.

Again, the definitions of syntax splitting for restricted total preorders or ranking
functions cover the definitions of syntax splitting for TPOs/OCFs: A partition of Σ
is a syntax splitting for a total preorder ⪯ ∈ MTPO(Σ) according to Definition 9
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iff it is a syntax splitting for ⪯ according to Definition 11. A partition is a syntax
splitting for a ranking function κ ∈ MOCF (Σ) according to Definition 10 iff it is a
syntax splitting for κ according to Definition 12.

Note that a syntax splitting of an OCF κ is also a syntax splitting for the TPO
⩽κ induced by κ, but not the other way round (see [22]).

Example 2. The restricted ranking function κ over Σ = {a, b, c} displayed in Fig-
ure 1a and the total preorder induced by κ both have the syntax splitting {{a}, {b, c}}.

4 Postulates for Mappings on Epistemic States

TPOs and OCFs have each their own advantages. While calculating with plausibili-
ties is easier in an OCF-based framework, TPOs are more closely linked to qualitative
beliefs. To work with both frameworks and to transfer approaches from one frame-
work to the other, we are interested in transformations from OCFs to TPOs and
vice versa. More generally, we want to investigate transformations among epistemic
states represented by TPOs or by OCFs.

We formalize the transformations among models of epistemic states by introduc-
ing so-called epistemic state mappings. To capture that an epistemic state mapping
should cover transformations for different signatures, we define epistemic state map-
pings as function families providing a mapping for every signature and every set of
worlds over this signature. Note that TPO and OCF are used as symbols represent-
ing the type of an epistemic state in the following definition.

Definition 13. Let I1, I2 ∈ {TPO, OCF}. An epistemic state mapping from I1 to
I2, denoted as ξ : I1 ⇝ I2, is a function family ξ = (ξΣ,A) for signatures Σ and
formulas A ∈ LΣ with ξΣ,A : MI1(Σ, A) → MI2(Σ, A) such that A ≡ B implies
ξΣ,A = ξΣ,B.

Definition 13 covers four types of epistemic state mappings. A mapping ξ1 :
TPO ⇝ TPO maps total preorders to total preorders; a mapping ξ2 : TPO ⇝ OCF
maps total preorders to ranking functions; a mapping ξ3 : OCF ⇝ OCF maps
ranking functions to ranking functions; and a mapping ξ4 : OCF ⇝ TPO maps
ranking functions to total preorders. Applying an epistemic state mapping always
leaves the domain of the epistemic state unchanged, e.g., for a ranking function
κ : Mod Σ(A) → N0 we have dom(ξ3 Σ,A(κ)) = Mod Σ(A).

Note that the last requirement for epistemic state mappings given in Definition 13
amounts to syntax independence for index A of the function family (ξΣ,A).
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Example 3. Consider the family of functions ξreverse : TPO ⇝ TPO defined by,
for a signature Σ, a formula A ∈ LΣ, and ⪯ ∈ MTPO(Σ, A),

ξreverse
Σ,A (⪯) = ⪯′ with ω1 ⪯′ ω2 iff ω2 ⪯ ω1 for ω1, ω2 ∈ Mod Σ(A).

The function family ξreverse is an epistemic state mapping from TPOs to TPOs that
reverses a TPO. The family of functions τ∗ defined by, for a signature Σ, a formula
A ∈ LΣ, and κ ∈ MOCF (Σ, A),

τ∗
Σ,A(κ) = ⋖−κ

is an epistemic state mapping from TPOs to OCFs, that maps every OCF to the
TPO induced by it.

Every epistemic state mapping represents a way to transform epistemic states
of kind I1 to epistemic states of kind I2 for different domains. Desirable properties
of epistemic state mappings (ξΣ,A) can be stated in the form of postulates. For
instance, regarding the conditional inference represented by an epistemic state, we
could require that the set of accepted conditional beliefs should not be reduced,
should not be increased, or should be kept identical.

Postulates. Let I1, I2 ∈ {TPO, OCF} and let ξ : I1 ⇝ I2 be an epistemic state
mapping from I1 to I2. Let Σ be a signature, A ∈ LΣ, and Ψ ∈ MI1(Σ, A).

Let (C|D) ∈ (L | L)Σ.

(IE) Ψ |= (C|D) iff ξΣ,A(Ψ) |= (C|D).

(wIE⇒) Ψ |= (C|D) implies ξΣ,A(Ψ) |= (C|D).

(wIE⇐) ξΣ,A(Ψ) |= (C|D) implies Ψ |= (C|D).

The postulate (IE) requires inferential equivalence and states that the epistemic
state mapping may not change the set of conditionals accepted by an epistemic
state. The epistemic state and its mapping induce the same inference relation with
respect to conditionals. This is quite a strong postulate, the postulates (wIE⇒)
and (wIE⇐) are weaker versions of (IE). Postulate (wIE⇒) states that an epistemic
state mapping may not remove conditionals from the set of inferred conditionals.
Postulate (wIE⇐) states that after applying an epistemic state mapping, we may
not accept additional conditionals.
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Postulates. Let I1, I2 ∈ {TPO, OCF} and let ξ : I1 ⇝ I2 be an epistemic state
mapping. Let Σ be a signature, A ∈ LΣ, and Ψ ∈ MI1(Σ, A).

Let ω1, ω2 in dom(Ψ).

(Ord) ω1 ⋖Ψ ω2 iff ω1 ⋖ξΣ,A(Ψ) ω2.

(wOrd⇒) ω1 ⋖Ψ ω2 implies ω1 ⋖ξΣ,A(Ψ) ω2

(wOrd⇐) ω1 ⋖ξΣ,A(Ψ) ω2 implies ω1 ⋖Ψ ω2.

The postulate (Ord) states that the ordering on worlds induced by an epistemic
state should not be changed by the epistemic state mapping, i.e., if a world ω1
is more plausible than a world ω2 in a TPO or OCF Ψ, then ω1 should be more
plausible than ω2 in ξ(Ψ) as well. While (Ord) is quite a strong postulate, the
weaker versions (wOrd⇒) and (wOrd⇐) cover only one direction of the “iff” in
(Ord). (wOrd⇒) states that if a world ω1 is more plausible than another world ω2
before applying the epistemic state mapping, then ω1 should still be more plausible
than ω2 after applying the epistemic state mapping. (wOrd⇐) requires that a world
ω1 can only be more plausible than another world ω2 after applying the epistemic
state mapping, if ω1 was already more plausible than ω2 before the application of
the epistemic state mapping.

To some extent, postulate (Ord) can be seen as a generalization of the idea of
kinematics in probabilistics and for ranking functions [32] in the sense that it requires
the preservation of relations between worlds after the application of an operation –
conditionalization for probabilities and ranking functions, epistemic state mappings
here.

It is easy to see that (IE) is equivalent to the conjunction of (wIE⇒) and (wIE⇐)
and that (Ord) is equivalent to the conjunction of (wOrd⇒) and (wOrd⇐). Other
relationships among the postulates are less obvious.

Proposition 1. The following relationships hold between the introduced postulates:

1. (IE) is equivalent to (Ord).

2. (wIE⇒) is equivalent to (wOrd⇒).

3. (wIE⇐) is equivalent to (wOrd⇐).

Proof. Let ξ : I1 ⇝ I2 be a epistemic state mapping with I1, I2 ∈ {TPO, OCF}.
Ad (2): “⇐” Let (ξΣ,A) satisfy (wOrd⇒). Let Ψ ∈ MI1(Σ, A) and Φ =
ξΣ,A(Ψ). If Ψ |= (D|C), then min(Mod Σ(CD),⋖Ψ) ⋖Ψ min(Mod Σ(CD),⋖Ψ). In
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this case, (wOrd⇒) implies min(Mod Σ(CD),⋖Φ) ⋖Φ min(Mod Σ(CD),⋖Φ). This is
equivalent to Φ |= (C|D). Therefore, (ξΣ,A) satisfies (wIE⇒).

“⇒” Let (ξΣ,A) satisfy (wIE⇒). Let Ψ ∈ MI1(Σ, A) and Φ = ξΣ,A(Ψ). Let
ω1, ω2 ∈ Ω with ω1 ⋖Ψ ω2. Then, Ψ |= (ω1|ω1 ∨ ω2). (wIE⇒) implies that Φ |=
(ω1|ω1 ∨ ω2). Therefore, ω1 ⋖Φ ω2. We see that (ξΣ,A) satisfies (wOrd⇒).
Ad (3): “⇐” Let (ξΣ,A) satisfy (wOrd⇐). Let Ψ ∈ MI1(Σ, A) and Φ =
ξΣ,A(Ψ). If Φ |= (D|C), then min(Mod Σ(CD),⋖Φ) ⋖Φ min(Mod Σ(CD),⋖Φ). In
this case, (wOrd⇐) implies min(Mod Σ(CD),⋖Ψ) ⋖Ψ min(Mod Σ(CD),⋖Ψ). This is
equivalent to Ψ |= (D|C). Therefore, (ξΣ,A) satisfies (wIE⇐).

“⇒” Let (ξΣ,A) satisfy (wIE⇐). Let Ψ ∈ MI1(Σ, A) and Φ = ξΣ,A(Ψ). Let
ω1, ω2 ∈ Ω with ω1 ⋖Φ ω2. Then, Φ |= (ω1|ω1 ∨ ω2). (wIE⇐) implies that Ψ |=
(ω1|ω1 ∨ ω2). Therefore, ω1 ⋖Ψ ω2. We see that (ξΣ,A) satisfies (wOrd⇐).
Ad (1): This follows from (2) and (3) as (IE) is the conjunction of (wIE⇒) and
(wIE⇐) and (Ord) is the conjunction of (wOrd⇒) and (wOrd⇐).

Postulates for revision and contraction of total preorders and ranking functions
with syntax splitting (as in Definitions 9 and 10) have been introduced and investi-
gated in [22], [16], and [14]. Because syntax splittings are a significant property of
epistemic states, it is of interest to identify epistemic state mappings that preserve
them.

Postulates. Let I1, I2 ∈ {TPO, OCF} and let ξ : I1 ⇝ I2 be an epistemic state
mapping. Let Σ be a signature, A ∈ LΣ, and Ψ ∈ MI1(Σ, A).

(SynSplit) If {Σ1, . . . , Σn} is a syntax splitting for Ψ, then {Σ1, . . . , Σn} is a
syntax splitting for ξΣ,A(Ψ).

(SynSplitb) If {Σ1, Σ2} is a syntax splitting for Ψ, then {Σ1, Σ2} is a syntax
splitting for ξΣ,A(Ψ).

(SynSplit) states that an epistemic state mapping preserves syntax splittings
of the epistemic state. In the literature addressing syntax splittings, the focus is
sometimes on binary syntax splittings [28, 30, 20]; (SynSplitb) is a splitting postulate
for the special case of syntax splittings in two subsignatures.

Depending on the context in which we want to use the epistemic state mappings,
compatibility with marginalization and conditionalization might be useful.

Postulates. Let I1, I2 ∈ {TPO, OCF} and let ξ : I1 ⇝ I2 be an epistemic state
mapping. Let Σ be a signature, A ∈ LΣ, and Ψ ∈ MI1(Σ, A).
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MI(Σ, A) MI(Σ′, A)

MI(Σ, A) MI(Σ′, A)

·|Σ′

·|Σ′

ξ ξ

(a) Illustration of (Marg).

MI(Σ, A) MI(Σ, A ∧ F )

MI(Σ, A) MI(Σ, A ∧ F )

·|F

·|F

ξ ξ

(b) Illustration of (Cond).

Figure 2: Commutative diagrams illustrating the postulates (Cond) and (Marg).

Let Σ′ ⊆ Σ with Σ′ ̸= ∅ and A′ = A|Σ′.

(Marg) ξΣ′,A′(Ψ|Σ′) = (ξΣ,A(Ψ))|Σ′

Let F ∈ LΣ with Mod Σ(F ) ∩ dom(Ψ) ̸= ∅.

(Cond) ξΣ,A∧F (Ψ|F ) = (ξΣ,A(Ψ))|F

The postulate (Marg) ensures the compatibility of an epistemic state mapping
with marginalization. It states that changing the order in which marginalization and
the epistemic state mapping are applied does not matter. This postulate is illus-
trated in Figure 2a. Similarly, the postulate (Cond) ensures the compatibility of an
epistemic state mapping with conditionalization. (Cond) is illustrated in Figure 2b.

In the next sections, we will investigate the introduced postulates further for
specific combinations of I1 and I2.

5 Epistemic State Mappings of Different Types
In the following, we investigate epistemic state mappings from TPOs to TPOs (Sec-
tion 5.1), OCFs to OCFs (Section 5.2), OCFs to TPOs (Section 5.3), and TPOs to
OCFs (Section 5.4) in more detail.

5.1 Mapping Total Preorders to Total Preorders

Let us first consider epistemic state mappings from total preorders to total preorders.
If we want (IE) or the equivalent (Ord) to hold, we do not have much choice.
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Proposition 2. The only epistemic state mapping from TPOs to TPOs that fulfils
(Ord) is the identity.

From Proposition 2 it follows that (IE) or (Ord) imply (SynSplit), (Cond), and
(Marg) for epistemic state mappings from TPOs to TPOs as the identity fulfils these
postulates.

Proposition 3. Let ξ : TPO ⇝ TPO be an epistemic state mapping from TPOs to
TPOs. If ξ fulfils (Ord) or (IE) then ξ fulfils (SynSplit), (Cond), and (Marg).

The situation changes if we require only (wOrd⇒) or (wOrd⇐). We can think of
a total preorder ⪯ as a stack of “layers”. We say that two worlds ω1, ω2 ∈ dom(⪯)
have the same position in ⪯, denoted as ω1 ≈⪯ ω2, if ω1 ⪯ ω2 and ω1 ⪯ ω2. The
relation ≈⪯ is an equivalence relation and layers are the equivalence classes of ≈⪯
on dom(⪯). I.e., two worlds ω1, ω2 ∈ dom(⪯) are in the same layer if they have the
same position in the TPO. The layers are stacked according to the TPO: the lower
a layer is, the smaller the worlds in it are with respect to ⪯.

A consequence of each (wOrd⇒) and (wOrd⇐) is that we cannot swap parts of
different layers. If ω1 ≺ ω2 for worlds ω1, ω2 then it is not possible that ω2 ≺′ ω1
with ⪯′ = ξ(⪯) if ξ fulfils either (wOrd⇒) or (wOrd⇐).

(wOrd⇒) allows the “splitting” of layers. For worlds ω1, ω2 with ω1 ≈⪯ ω2 we
may have an epistemic state mapping ξ fulfilling (wOrd⇒) with ω1 ≺′ ω2 where
⪯′ = ξ(⪯). Thus, (wOrd⇒) allows to extend the set of accepted conditionals as
stated in the equivalent postulate (wIE⇒). However, the opposite is not allowed:
An epistemic state mapping fulfilling (wOrd⇒) may not merge parts of different
layers together.

With respect to (wOrd⇐) we obtain dual observations. For ω1, ω2 with ω1 ≺ ω2
we may have an epistemic state mapping ξ fulfilling (wOrd⇐) with ω1 ≈ξ(⪯) ω2, i.e.,
merging of layers is allowed. Note that in this case we have ω1 ≈ξ(⪯) ω3 ≈ξ(⪯) ω2 for
any ω3 with ω1 ⪯ ω3 ⪯ ω2. Thus, (wOrd⇐) allows us to reduce the set of accepted
conditionals (as stated in (wIE⇐)) which can be seen as a form of forgetting [5].
However, (wOrd⇐) does not allow splitting of layers.

5.2 Mapping Ranking Functions to Ranking Functions
Let us consider the case where we map ranking functions to ranking functions. For
this case there are epistemic state mappings fulfilling the postulates (IE), (Ord),
(SynSplit), (Cond), and (Marg) simultaneously.

Proposition 4. Let a ∈ N+. The epistemic state mapping ξ : OCF ⇝ OCF , κ 7→
a · κ fulfils (IE), (Ord), (SynSplit), (Cond), and (Marg).
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We again use the concept of layers introduced in Section 5.1. For a ranking
function κ, each layer contains the worlds in κ−1(k) for a certain k ∈ N0. Contrary
to total preorders, ranking functions can have empty layers. These empty layers (or
the lack thereof) make ranking functions more expressive than total preorders.

The implications of (Ord) for epistemic state mappings from OCFs to OCFs are
similar to the implications for epistemic state mappings from TPOs to TPOs in
terms of layers. The layers are not swapped, split, or merged by the epistemic state
mapping. However, (Ord) allows for adding or removing empty layers. For example,
the epistemic state mapping that removes all empty layers beneath a non-empty
layer fulfils (Ord).

In contrast to (Ord), the postulate (wOrd⇒) allows splitting of layers. If two
worlds have the same rank in a ranking function κ they may have different ranks in
ξ(κ) without violating (wOrd⇒). But (wOrd⇒) prevents merging different layers.
If two worlds have different ranks in a ranking function κ before the epistemic state
mapping, they may not have the same rank in ξ(κ).

The postulate (wOrd⇐) allows merging but not splitting of layers. If two worlds
ω1, ω2 have different ranks in κ they may have the same rank in κ′ = ξ(κ) without
violating (wOrd⇐). In this case it holds that κ′(ω1) = κ′(ω2) = κ′(ω3) for any world
ω3 with κ(ω1) ⩽ κ(ω3) ⩽ κ(ω2).

The next proposition provides a strong representation result, because it shows
that the epistemic state mappings used in Proposition 4 are precisely the epistemic
state mappings from OCFs to OCFs fulfilling the postulates (Ord), (Cond), and
(Marg).

Proposition 5. Let ξ : OCF ⇝ OCF be an epistemic state mapping from OCFs to
OCFs fulfilling (Ord), (Cond), and (Marg). Then there is an a ∈ N+ such that for
every (restricted) ranking function κ it holds that ξ(κ) = a · κ.

Proof. Let ξ : OCF ⇝ OCF be an epistemic state mapping. We need to show that
there is an a ∈ N such that

ξΣ,A(κ) = a · κ (5)

for any Σ and A ∈ LΣ and κ : Mod Σ(A) → N0.
We do this in three parts. First, we consider some arbitrary signature Σ with

|Σ| ⩾ 3. We show that there is an a such that for any ranking function κ1 ∈
MOCF (Σ, ω1 ∨ ω2) with exactly two worlds ω1, ω2 ∈ ΩΣ in its domain it holds that
ξΣ,ω1∨ω2(κ1) = a · κ1. In the second part, we show that for any signature Σ′ and any
OCF κ6 ∈ MOCF (Σ′, ω7 ∨ ω8) with exactly two worlds ω7, ω8 ∈ ΩΣ′ in its domain it
holds that ξΣ′,A(κ6) = a · κ (for the same a that we found in the first part). Finally,
in the third part, we show that for any signature Σ′, any formula A ∈ LΣ′ , and any
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OCF κ ∈ MOCF (Σ′, A) it holds that ξΣ′,A(κ) = a · κ, still for the a we found in the
first part.

Part 1: Show (5) for restricted OCFs with a domain of two worlds over a
single Σ
Let Σ be a signature with |Σ| ⩾ 3; thus |ΩΣ| ⩾ 8. First, we consider OCFs over Σ
with two worlds in their domain. We need to show that there is an a such that for
any ω1, ω2 ∈ ΩΣ and κ1 ∈ MOCF (Σ, ω1 ∨ω2) Equation (5) holds. At least one of the
worlds has to have rank 0 in κ1; w.l.o.g. assume κ1 has the form {ω1 7→ 0, ω2 7→ b}
for some b ∈ N0. Let κ′

1 = ξ(κ1).
Let ω3, ω4 ∈ ΩΣ be worlds and κ2 : {ω3, ω4} → N0 ∈ MOCF (Σ, ω3 ∨ ω4) with

κ2(ω3) = 0, κ2(ω4) = 1. Let κ′
2 = ξ(κ2). Let a = κ′

2(ω4) − κ′
2(ω3). Because of (Ord),

we have a > 0. Note that a is independent of the considered ranking function κ1.
To show that κ′

1 = a · κ1 we distinguish three cases.
Case 1.1: b = 0 For b = 0, (Ord) requires that κ′

1 has the form {ω1 7→ 0, ω2 7→
0}. Therefore, it holds that κ′

1 = a · κ1.
Case 1.2: b ⩾ 1 and {ω1, ω2} ∩ {ω3, ω4} = ∅ We show that κ′

1(ω2) = a · b by
induction over b.
Base Case: Let b = 1. Consider the ranking function κ3 : {ω1, ω2, ω3, ω4} → N0
with κ3(ω1) = κ3(ω3) = 0 and κ3(ω2) = κ3(ω4) = 1. Let κ′

3 = ξ(κ3). (Ord) requires
that κ′

3(ω1) = κ′
3(ω3) = 0 and κ′

3(ω2) = κ′
3(ω4). (Cond) requires that κ′

3(ω4) = a
because κ3|(ω3 ∨ ω4) = κ2. Therefore, κ′

3(ω2) = a = a · b. With (Cond) it follows
that κ′

1(ω2) = a · b.
Induction Step: Let b = n + 1. Let ω5 ∈ ΩΣ \ {ω1, ω2, ω3, ω4} be an additional
world. Consider the OCF κ4 : {ω1, ω2, ω5} → N0 with κ4(ω1) = 0, κ4(ω5) = n, and
κ4(ω2) = n + 1. Let κ′

4 = ξ(κ4). The induction hypothesis in combination with
(Cond) requires that κ′

4(ω5) = a · n. Considering (Cond) and κ2 as in the base case
requires κ′

4(ω2) − κ′
4(ω5) = a. Hence, κ′

4(ω2) = a · (n + 1). With (Cond) it follows
that κ′

1(ω2) = a · b and therefore κ′
1 = a · κ1.

Case 1.3: b ⩾ 1 and {ω1, ω2} ∩ {ω3, ω4} ≠ ∅ Let ω5, ω6 ∈ ΩΣ \ {ω1, ω2, ω3, ω4} be
two additional worlds. Consider the OCF κ5 : {ω1, ω2, ω5, ω6} → N0 with κ5(ω1) =
κ5(ω3) = 0 and κ5(ω2) = κ5(ω4) = b. Using Case 1.2 we know that Equation (5)
holds for κ5|(ω5 ∨ ω6). By using (Cond) and (Ord) as in the Base Case of the
induction proof in Case 1.2, we get κ′

1 = a · κ1.

Part 2: Show (5) for restricted OCFs with a domain of two worlds over
any sig. Σ′

We need to show that for any signature Σ′, worlds ω7, ω8 ∈ ΩΣ′ and ranking function
κ6 ∈ MOCF (Σ, ω7 ∨ ω8), Equation (5) holds. At least one of the worlds has to have
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rank 0 in κ6; w.l.o.g. assume κ6 has the form {ω7 7→ 0, ω8 7→ c} for some c ∈ N0. Let
κ′

6 = ξ(κ6). Because of (Ord), κ′
6 has the form {ω7 7→ 0, ω8 7→ d} for some d ∈ N0.

It is left to show that d = a · c.
We distinguish two cases:

Case 2.1: Σ ⊈ Σ′ Let ω+
7 , ω+

8 ∈ ΩΣ∪Σ′ be variable assignments such that the
variables in Σ′ are assigned to the same values in ω7 and ω+

7 , the variables in Σ′

are assigned to the same values in ω8 and ω+
8 , and the variables in Σ \ Σ′ have the

different values in ω+
7 and ω+

8 . Let κ7 : {ω+
7 , ω+

8 } → N0 ∈ MOCF (Σ ∪ Σ′, ω+
7 ∨ ω+

8 )
with κ7(ω+

7 ) = 0 and κ7(ω+
8 ) = c be a restricted ranking function over Σ ∪ Σ′.

Postulate (Marg) requires that ξ(κ7)|Σ′ = ξ(κ7|Σ′). Additionally, we have κ7|Σ′ = κ6.
Hence, we have that

ξ(κ7)(ω+
8 ) = ξ(κ7)|Σ′(ω8) = ξ(κ6)(ω8) = κ′

6(ω8) = d. (6)

Let ωΣ
7 , ωΣ

8 ∈ ΩΣ be the worlds over Σ such that ωΣ
7 assigns the variables in Σ to

the same values as ω+
7 and ωΣ

8 assigns the variables in Σ to the same values as ω+
8 .

Because we chose different variable assignments over Σ \ Σ′ in ω+
7 , ω+

8 we have that
ωΣ

7 ̸= ωΣ
8 . Marginalization of κ7 to Σ yields the ranking function κ8 : {ωΣ

7 , ωΣ
8 } →

N0 with κ8(ωΣ
7 ) = 0 and κ8(ωΣ

8 ) = c. With Part 1 of the proof it follows that
ξ(κ8)(ωΣ

7 ) = 0 and ξ(κ8)(ωΣ
8 ) = a · c. Analogously to (6) we have that ξ(κ7)(ω+

8 ) =
ξ(κ7)|Σ(ωΣ

8 ) = ξ(κ8)(ωΣ
8 ) = a · c. Together, we have d = ξ(κ6)(ω+

8 ) = a · c.
Note that Case 2.1 also applies to signatures Σ′ with one element.

Case 2.2: Σ ⊆ Σ′ Consider an additional signature Σ′′ with |Σ′′| = |Σ| and
Σ′′ ∩ Σ′ = ∅. Equation (5) holds for OCFs with two worlds in their domain over Σ′′

as Case 2.1 applies. We can show d = a ·c analogously to Case 2.1 using Σ′′ instead
of Σ.

Part 3: Show Equation (5) for (restricted) OCFs over any number of
worlds
We need to show that for any signature Σ′, formula A ∈ LΣ′ and ranking function
κ ∈ MOCF (Σ, A), Equation (5) holds. Let ω0 ∈ κ−1(0) and κ′ = ξ(κ). Because
of (Ord) and because the minimal rank of an OCF is 0, we have that κ′(ω0) = 0.
Let ω ∈ dom(κ) be any world in the domain of κ. Let κ9 = κ|(ω0 ∨ ω) and let
κ′

9 = ξ(κ9). From Part 2 it follows that κ′
9 = a · κ9. Using (Cond) we have

κ′(ω) = κ′|(ω0 ∨ ω)(ω) = κ′
9(ω) = a · κ9(ω) = a · κ(ω).

As a direct implication of this, for epistemic state mappings from OCFs to OCFs
(Ord), (Cond), and (Marg) imply (SynSplit).
Proposition 6. For epistemic state mappings ξ : OCF ⇝ OCF the conjunction of
(Ord), (Cond), and (Marg) implies (SynSplit).

173



Haldimann et al.

In Proposition 6 postulate (Ord) can be replaced by the equivalent (IE), i.e., for
ξ : OCF ⇝ OCF , (IE), (Cond), and (Marg) also imply (SynSplit).

5.3 Mapping Ranking Functions to Total Preorders

In this section, we investigate epistemic state mappings from ranking functions to
total preorders on worlds. As for mappings from total preorders to total preorders,
there is a unique mapping satisfying (Ord) and the equivalent (IE).

Proposition 7 (τ∗). There is a unique epistemic state mapping τ∗ : OCF ⇝ TPO
fulfilling (Ord). This mapping is τ∗ : OCF ⇝ TPO given by κ 7→ ⋖−κ

.

Proof. Let κ be any ranking function. (Ord) states that ⪯ = ξ(κ) induces the same
ranking function as κ. As the total preorder induced by a total preorder is the total
preorder itself, the only epistemic state mapping from ranking functions to total
preorders fulfilling (Ord) is

τ∗ : OCF ⇝ TPO, κ 7→ ⋖−κ
.

In the following, we will investigate the properties of the epistemic state mapping
τ∗. Obviously, τ∗ is surjective: For a given total preorder ⪯ it is easy to construct
a ranking function κ such that ⪯ = τ∗(κ). But τ∗ is not injective as there are more
ranking functions than total preorders for any given (non-empty) signature (cf. [3]).

The epistemic state mapping τ∗ preserves syntax splittings of the ranking func-
tion.

Proposition 8. τ∗ fulfils (SynSplit).

Proof. Let κ = κ1 ⊕· · ·⊕κn be an OCF over Σ with a syntax splitting {Σ1, . . . , Σn}.
Let ⪯ = τ∗(κ). Let i ∈ {1, . . . , n} and ω1, ω2 ∈ ΩΣ with ω ̸=i

1 = ω ̸=i
2 and ω1 ⪯ ω2.

Because τ∗ fulfils (Ord), we have κ(ω1) ⩽ κ(ω2). The syntax splitting on κ and
ω ̸=i

1 = ω ̸=i
2 implies κi(ωi

1) ⩽ κi(ωi
2). This and the syntax splitting on κ implies

ωi
1 ⪯|Σi

ωi
2.

Thus, {Σ1, . . . , Σn} is a syntax splitting for ⪯.

As a direct implication of Proposition 8, τ∗ fulfils (SynSplitb). However, τ∗ may
introduce new syntax splittings as the ranking function κ2 in the following example
shows.
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Example 4. Let Σ = {a, b} and κ1, κ2 be ranking functions over Σ such that:

κ1(ab) = 0 κ1(ab) = 1 κ1(ab) = 1 κ1(ab) = 2
κ2(ab) = 0 κ2(ab) = 1 κ2(ab) = 1 κ2(ab) = 3

κ1 has the syntax splitting {{a}, {b}}, while κ2 does not have this syntax splitting.
Both ranking functions are mapped to the total preorder ab ≺ ab, ab ≺ ab by τ∗ which
has the syntax splitting {{a}, {b}}.

The function τ∗ behaves nicely with respect to marginalization and conditional-
ization.

Proposition 9. τ∗ fulfils (Marg).

Proof. Let κ ∈ MOCF (Σ, A) be an OCF and Σ1 ⊆ Σ. Let ⪯1 = τ∗(κ|Σ1) and
⪯2 = τ∗(κ). Let ωa, ωb ∈ ΩΣ1 .

ωa ⪯1 ωb

⇔ κ|Σ1(ωa) ⩽ κ|Σ1(ωb)
⇔ min({κ(ω′) | ω′ ∈ ΩΣ, ω′1 = ω1},⩽) ⩽ min({κ(ω′) | ω′ ∈ ΩΣ, ω′1 = ω2},⩽)
⇔ min({ω′ | ω′ ∈ ΩΣ, ω′1 = ω1}, ⪯2) ⪯2 min({ω′ | ω′ ∈ ΩΣ, ω′1 = ω2}, ⪯2)
⇔ ωa ⪯2|Σ1 ωb

Proposition 10. τ∗ fulfils (Cond).

Proof. Let κ ∈ MOCF (Σ, A) be a ranking function and F ∈ LΣ such that Mod Σ(A)∩
Mod Σ(F ) ̸= ∅. Let ⪯1 = τ∗(κ|F ) and ⪯2 = τ∗(κ). Let ω1, ω2 ∈ Mod (A ∧ F ).

ω1 ⪯1 ω2

⇔ κ|F (ω1) ⩽ κ|F (ω2)
⇔ κ(ω1) ⩽ κ(ω2)
⇔ ω1 ⪯2 ω2

⇔ ω1 ⪯2|F ω2

Similar to Propositions 5 and 6 we can conclude that for epistemic state mappings
from OCFs to TPOs, (Ord) (or the equivalent (IE)) implies (SynSplit), (Marg), and
(Cond).
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Proposition 11. Let ξ : OCF ⇝ TPO be an empistemic state mapping from OCFs
to TPOs. If ξ fulfils (Ord) or (IE) then ξ fulfils (SynSplit), (Cond), and (Marg).

If we require only (wOrd⇒) to hold for an epistemic state mapping, this mapping
may split layers in ⋖κ thereby adding new conditional beliefs. The other way round,
an epistemic state mapping fulfilling only (wOrd⇐) is allowed to merge layers of ⋖κ

and thereby to remove conditional beliefs.

5.4 Mapping Total Preorders to Ranking Functions
Now we want to consider epistemic state mappings that map a total preorder to
a ranking function. Since the functions in τ∗ are not bijective, we cannot simply
reverse them. On the contrary, there is more than one epistemic state mapping ρ :
TPO ⇝ OCF that fulfils (Ord). That is not surprising as a ranking function contains
more information than a total preorder over the same domain. The additional
information is the absolute distance between worlds. The functions in ρ need to
fill in this missing information and there is some freedom to do this. One of the
epistemic state mappings satisfying (Ord) is the following mapping ρ∗.

Definition 14. We define the epistemic state mapping ρ∗ : TPO ⇝ OCF as follows.
For ⪯ ∈ MTPO(Σ, A) let

L⪯
0 = min(dom(⪯), ⪯) and

L⪯
k = min(dom(⪯) \ (L⪯

0 ∪ · · · ∪ L⪯
k−1), ⪯) for k > 0.

We define ρ∗(⪯) = κ⪯ where for every ω ∈ dom(⪯) we choose κ⪯(ω) = k such that
ω ∈ L⪯

k .

Note that the construction of κ⪯ = ρ∗(⪯) in Definition 14 is well-defined, as the
sets L⪯

i and L⪯
j are disjoint for i ̸= j; and for every ω ∈ dom(⪯) there is a k with

ω ∈ L⪯
k . Every set L⪯

k corresponds to the k-th layer of ⪯.

Example 5. The epistemic state mapping ρ∗ maps the total preorder ab ≺ ab, ab ≺
ab over signature Σ = {a, b} to κ⪯ : {ab 7→ 0; ab 7→ 1; ab 7→ 1; ab 7→ 2}.

Proposition 12. The epistemic state mapping ρ∗ fulfils (Ord).

The epistemic state mapping ρ∗ from Definition 14 is only one of many possible
epistemic state mappings fulfilling (Ord). An obvious wish would be to to use this
set of possibilities to choose a transformation that fulfils additional postulates such
as (SynSplit). However, ρ∗ does not fulfil (SynSplit), and more generally there is no
epistemic state mapping ρ that fulfils both (Ord) and (SynSplit).
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⪯

abc

ābc ab̄c abc̄

ab̄c̄

ābc̄

āb̄c

āb̄c̄

Figure 3: Total preorder ⪯ on Σ = {a, b, c} with syntax splitting
{{a}, {b}, {c}}

.
There is no ranking function with that syntax splitting that induces ⪯.

Proposition 13. There is no epistemic state mapping ρ : TPO ⇝ OCF fulfilling
both (Ord) and (SynSplit).

Proof. Let Σ = {a, b, c} and ⪯ be the total preorder over ΩΣ displayed in Figure 3.
This TPO has the syntax splitting

{{a}, {b}, {c}}
. Consider the highlighted (red

and circled) worlds in Figure 3. Let κ = ρ(⪯). Assume that (Ord) holds, i.e., the
worlds abc and abc have the same rank in κ and the world abc has a lower rank than
abc in κ. If κ had the syntax splitting

{{a}, {b}, {c}}
it would also have the syntax

splitting
{{a}, {b, c}}

and therefore, we would have κ(abc)−κ(abc) = κ(abc)−κ(abc)
leading to a contradiction. We conclude that there is no ranking function κ = ρ(⪯)
such that both (Ord) holds and κ has the syntax splitting

{{a}, {b}, {c}}
.

The incompatibility observed in Proposition 13 persists even if we consider the
weaker (SynSplitb) instead of (SynSplit) and the weaker (wOrd⇒) instead of (Ord).

Proposition 14. There is no epistemic state mapping ρ : TPO ⇝ OCF that fulfils
both (wOrd⇒) and (SynSplitb).

Proof. Let Σ = {a, b, c, d} be a signature and ⪯ be the total preorder over ΩΣ
displayed in Figure 4. This TPO has the syntax splitting

{{a, b}, {c, d}}
. To-

wards a contradiction, assume there is a ranking function κ with syntax splitting{{a, b}, {c, d}}
such that ω1 ≺ ω2 implies κ(ω1) < κ(ω2). Then there are ranking

functions κ1 : Ω{a,b} → N0 and κ2 : Ω{c,d} → N0 such that κ = κ1 ⊕ κ2. Let

κ1(ab) = 0 κ1(ab) = i κ1(ab) = j κ1(ab) = k

κ2(cd) = 0 κ2(cd) = l κ2(cd) = m κ2(cd) = n.
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⪯

ab cd

ab cd

ab cd

ab cd

ab cd

ab cd

ab cd

ab cd

ab cd

ab cd

ab cd

ab cd

ab cd

ab cd

ab cd

ab cd

Figure 4: Total preorder ⪯ on Σ = {a, b, c, d} with syntax splitting {a, b} ∪̇ {c, d}.
There is no ranking function with that syntax splitting that induces a superset of
⪯.

As ω1 ≺ ω2 implies κ(ω1) < κ(ω2) for every ω1, ω2 ∈ ΩΣ we have that

m + j = κ1(ab) + κ2(cd) = κ(abcd) < κ(abcd) = κ1(ab) + κ2(cd) = i + n.

Analogously, we get j > n from κ(abcd) > κ(abcd) and m > i from κ(abcd) >
κ(abcd). The combination of these inequations is a contradiction. The assumed
ranking function κ cannot exist.

However, the combination of (wOrd⇐) and (SynSplit) can be fulfilled simulta-
neously, as we will see later in this section (Proposition 19).

Any epistemic state mapping ρ from total preorders to ranking functions satisfy-
ing (Ord) is compatible with τ∗ (see Proposition 7) with respect to marginalization
in the following sense.

Proposition 15. Let ρ : TPO ⇝ OCF be an epistemic state mapping that fulfils
(Ord). For every total preorder ⪯ ∈ MTPO(Σ, A) and Σ′ ⊆ Σ it holds that

τ∗(ρ(⪯)|Σ′) = ⪯|Σ′ .

Proof. Let ρ satisfy (Ord). Let ⪯ be a TPO over Mod Σ(A) and κ = ρ(⪯). Let
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Σ′ ⊆ Σ and ⪯′= τ∗(κ|Σ′). Let ω1, ω2 ∈ dom(⪯′).

ω1 ⪯′ ω2

⇔ κ|Σ′(ω1) ⩽ κ|Σ′(ω2)
⇔ min({κ(ω) | ω ∈ ΩΣ, ω1 |= ω},⩽) ⩽ min({κ(ω) | ω ∈ ΩΣ, ω2 |= ω},⩽)
⇔ min({ω | ω ∈ ΩΣ, ω1 |= ω}, ⪯) ⪯ min({ω | ω ∈ ΩΣ, ω2 |= ω}, ⪯)
⇔ ω1 ⪯|Σ′ ω2

Thus, an epistemic state mapping ρ from OCFs to TPOs fulfilling (Ord) com-
mutes with τ∗ and marginalization (cf. Figure 5a). A corresponding property of τ∗

also holds for conditionalization (cf. Figure 5b).

Proposition 16. Let ρ : TPO ⇝ OCF be an epistemic state mapping fulfilling
(Ord). For every total preorder ⪯ ∈ MTPO(Σ, A) and F ∈ LΣ it holds that

τ∗(ρ(⪯)|F ) = ⪯|F .

Proof. Let ρ satisfy (Ord). Let ⪯ be a TPO over Mod Σ(A) and κ = ρ(⪯). Let
F ∈ LΣ and ⪯′ = τ∗(κ|F ). Let ω1, ω2 ∈ Mod Σ(A ∧ F ).

ω1 ⪯′ ω2

⇔ κ|F (ω1) ⩽ κ|F (ω2)
⇔ κ(ω1) ⩽ ω2

⇔ ω1 ⪯ ω2

⇔ ω1 ⪯|F ω2

It would be useful, if a transformation from a total preorder to a ranking function
preserved marginalization and conditionalization in the way τ∗ does for transforma-
tions from OCFs to TPOs (see Propositions 9 and 10). However, Postulate (Cond)
cannot be fulfilled simultaneously with (Ord). Moreover, (Cond) is even incompat-
ible with the weaker Postulate (wOrd⇒).

Proposition 17. There is no epistemic state mapping ρ : TPO ⇝ OCF that fulfils
(Cond) and (wOrd⇒).
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MOCF (Σ, A) MOCF (Σ′, A)

MTPO(Σ, A) MTPO(Σ′, A)

·|Σ′

·|Σ′

ρ τ∗

(a) Illustration of Proposition 15.

MOCF (Σ, A) MOCF (Σ, AF )

MTPO(Σ, A) MTPO(Σ, AF )

·|F

·|F

ρ τ∗

(b) Illustrating of Proposition 16.

Figure 5: Commutating diagrams illustrating Propositions 15 and 16. Precondition
of both propositions is that ρ : TPO ⇝ OCF fulfils (Ord).

⪯1

ab

āb

ab̄ āb̄
⪯2

ab

āb

ab̄

āb̄

Figure 6: Total preorders ⪯1 and ⪯2 on Σ = {a, b} which show that (Cond) is
incompatible with (wOrd⇒) for epistemic state mappings from TPOs to OCFs.

Proof. Let Σ = {a, b} be a signature and ⪯1, ⪯2 be the total preorders over ΩΣ
displayed in Figure 6. We have ⪯1|a = ⪯2|a and ⪯1|b = ⪯2|b. Let κ1 = ρ(⪯1)
and κ2 = ρ(⪯2). If (wOrd⇒) and (Cond) were fulfilled it would imply κ1(ab) =
(κ1|b)(a) = (κ2|b)(a) = κ2(ab) and κ1(ab) = (κ1|a)(b) = (κ2|a)(b) = κ2(ab). This
contradicts (wOrd⇒) as (wOrd⇒) requires κ1(ab) > κ1(ab) and κ2(ab) < κ2(ab).

Also, postulate (Marg) is in general unfulfillable in combination with (wOrd⇒)
for epistemic state mappings from TPOs to OCFs.

Proposition 18. There is no epistemic state mapping ρ : TPO ⇝ OCF that fulfils
both (wOrd⇒) and (Marg).

Proof. Let Σ = {a, b} be a signature and ⪯1, ⪯2 be the total preorders over ΩΣ
displayed in Figure 7. Let Σ1 = {a} and Σ2 = {b}. We have ⪯1|Σ1 = ⪯2|Σ1 and
⪯1|Σ2 = ⪯2|Σ2 . Let κ1 = ρ(⪯1) and κ2 = ρ(⪯2). If (wOrd⇒) and (Marg) were
fulfilled it would imply κ1(ab) = κ1|Σ1(ab) = κ2|Σ1(ab) = κ2(ab) and κ1(ab) =
κ1|Σ2(ab) = κ2|Σ2(ab) = κ2(ab). This contradicts (wOrd⇒) as (wOrd⇒) requires
κ1(ab) > κ1(ab) and κ2(ab) < κ2(ab).
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⪯1

ab

āb

ab̄

āb̄

⪯2

ab

āb

ab̄

āb̄

Figure 7: Total preorders ⪯1 and ⪯2 on Σ = {a, b} which show that (Marg) is
incompatible with (wOrd⇒) for epistemic state mappings from TPOs to OCFs.

Propositions 14, 17, and 18 all showed that (wOrd⇒) resp. the equivalent (wIE⇒)
cannot be fulfilled in combination with (SynSplit), (SynSplitb), (Cond), or (Marg).
Postulate (wOrd⇐) on the other hand can be fulfilled in combination with these
other postulates.

Proposition 19. There is an epistemic state mapping ξ : TPO ⇝ OCF fulfilling
(wOrd⇐), (SynSplit), (SynSplitb), (Cond), and (Marg).

Proof. The epistemic state mapping that maps every TPO to the uniform ranking
function κuni over the respective domain fulfils all three postulates.

However, the following triviality result shows that there is only one epistemic
state mapping fulfilling the combination of (wIE⇐) and (Cond).

Proposition 20. The only epistemic state mapping ρ : TPO ⇝ OCF that fulfils
(wIE⇐) and (Cond) maps every TPO to the trivial uniform ranking function κuni.

Proof. Let ρ be an epistemic state mapping fulfilling (wIE⇐) and (Cond). Let Σ
be a signature and ω1, ω2 ∈ ΩΣ with ω1 ̸= ω2. Choose a third world ω3 ∈ ΩΣ with
ω3 /∈ {ω1, ω2} and consider the TPOs

ω3 ≺1 ω2 ≺1 ω1 ≺1 ω4, . . . , ωn

ω3 ≺2 ω1 ≺2 ω2 ≺2 ω4, . . . , ωn

with {ω4, . . . , ωn} = ΩΣ \ {ω1, ω2, ω3}. Let κ1 = ρ(⪯1) and κ2 = ρ(⪯2). The
postulate (wIE⇐) requires that

κ1(ω2) ⩽ κ1(ω1) and κ2(ω1) ⩽ κ2(ω2). (∗)

Let A = ω3 ∨ ω1 and B = ω3 ∨ ω2. Conditionalization yields ⪯′
A= ⪯1|A = ⪯2|A

and ⪯′
B= ⪯1|B = ⪯2|B. Postulate (Cond) requires κ1|A = ρ(⪯′

A) = κ2|A and
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κ1|B = ρ(⪯′
B) = κ2|B. This implies κ1(ω1) = κ2(ω1) and κ1(ω2) = κ2(ω2). With

(∗) it follows that κ1(ω2) ⩽ κ1(ω1) = κ2(ω1) ⩽ κ2(ω2) = κ2(ω2). Therefore we can
replace the ⩽ in this chain of (in-)equations by =. Let C = ω1 ∨ ω2. We can see
that both ⪯1|C = {ω1 ≺ ω2} and ⪯2|C = {ω2 ≺ ω1} are mapped to the uniform
ranking function κuni due to (Cond). With (wIE⇐) follows that ω1, ω2 have to be
mapped to the same rank in every ranking function.

Since we can choose any two worlds as ω1, ω2 in this argumentation, all worlds
must have the same rank in the resulting ranking function. Therefore, any TPO is
mapped to the uniform ranking function κuni by ρ.

Considering the results in this section, other postulates beside (SynSplit),
(Cond), and (Marg) may be necessary to guide epistemic state mappings from TPOs
to OCFs.

6 Mapping Coherent Total Preorders to Ranking
Functions

In Section 5.4 we saw that there is no epistemic state mapping from TPOs to OCFs
that fulfils (Ord) and one of the postulates (Cond), (Marg), or (SynSplitb) simulta-
neously.

One reason for the incompatibility results in the previous section is that the
number of layers between two worlds can change during marginalization and con-
ditionalization of TPOs. In this section we will consider weaker versions of the
postulates (Cond), (Marg), (SynSplit) and (SynSplitb) that can be fulfilled simulta-
neously by an epistemic state mapping from TPOs to OCFs. For this purpose, we
strengthen the prerequisite of the postulates by employing the notion of coherence.

Coherence describes that a set of worlds has no “gaps” in a total preorder. A
set of worlds M is coherent with respect to a total preorder ⪯ if there are no two
worlds ω1, ω3 ∈ M such that ω3 follows ω1 directly in M but not in the domain of
⪯; i.e., if there is no world ω′

2 ∈ M with ω1 ≺ ω′
2 ≺ ω3 then there cannot be an

ω2 ∈ dom(⪯) with ω1 ≺ ω2 ≺ ω3.

Definition 15 (coherence for TPOs [23]). Let ⪯ ∈ MTPO(Σ) be a total preorder.
We call M ⊆ ΩΣ coherent with respect to ⪯ if for every ω1, ω2, ω3 ∈ ΩΣ with
ω1, ω3 ∈ M and ω1 ≺ ω2 ≺ ω3 there is a world ω′

2 ∈ M such that ω′
2 ≈ ω2.

A formula F ∈ LΣ is coherent with respect to ⪯ if Mod Σ(F ) is coherent with
respect to ⪯.

The notation of coherence can be extended to restricted TPOs.
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Definition 16 (coherence for restricted TPOs). Let ⪯ ∈ MTPO(Σ, A) be a restricted
TPO. We call M ⊆ dom(⪯) coherent with respect to ⪯ if for every ω1, ω2, ω3 ∈
dom(⪯) with ω1, ω3 ∈ M and ω1 ≺ ω2 ≺ ω3 there is a world ω′

2 ∈ M such that
ω′

2 ≈ ω2.
A formula F ∈ LΣ is coherent with respect to ⪯ if Mod Σ(F ∧A) is coherent with

respect to ⪯.

Example 6. The TPO ⪯1 shown in Figure 7 is coherent with respect to a, but not
coherent with respect to b. The TPO ⪯1 in Figure 6 is coherent with respect to b̄,
but not coherent with respect to b.

Using coherence, we can weaken the postulate (Cond) by restricting it to TPOs
that are coherent with respect to the formula used for conditionalization.

Postulates. Let (ξΣ,A) be an epistemic state mapping from TPOs to OCFs. Let Σ
be a signature, A ∈ LΣ, and ⪯ ∈ MTPO(Σ, A).

Let Σ′ ⊆ Σ with Σ′ ̸= ∅ and A′ = A|Σ′. Let F ∈ LΣ with Mod Σ(F ) ∩ dom(Ψ) ̸= ∅.

(Condcoh) If ⪯ is coherent with respect to F , then ξΣ,A∧F (⪯|F ) = ξΣ,A(⪯)|F .

Obviously, (Condcoh) is a weaker version of (Cond).

Proposition 21. Postulate (Cond) implies (Condcoh).

Consider again the epistemic state mapping ρ∗ that maps a TPO ⪯ to κ⪯
(see Definition 14). From the results in Section 5.3 we know that ρ∗ cannot ful-
fil (SynSplitb), (Marg), and (Cond) as it fulfils (Ord). However, it fulfils weaker
notions of these postulates based on coherence. To prove that (Condcoh) is fulfilled
by ρ∗, we use the following definition of the distance of two worlds in a total preorder.

Definition 17 (dist⪯(ω, ω′)). Let ⪯ be a restricted total preorder on worlds and
ω, ω′ ∈ dom(⪯) such that ω ⪯ ω′. The distance dist⪯(ω, ω′) between ω and ω′ in ⪯
is the length of the longest chain of inequations between ω and ω′ of the form

ω ≺ ω1 ≺ ω2 ≺ · · · ≺ ωn−1 ≺ ω′.

with ω1, . . . , ωn−1 ∈ dom(⪯). If ω ≈ ω′ then dist⪯(ω, ω′) = 0.

Note that if ω ≺ ω′ and {ω, ω′} is coherent with respect to ⪯, then dist⪯(ω, ω′) = 1.
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Lemma 2. Let ⪯ be a (restricted) total preorder. For two worlds ω, ω′ ∈ dom(⪯)
it holds that

dist⪯(ω, ω′) = κ⪯(ω) − κ⪯(ω′).

Lemma 3. Let ⪯ be a (restricted) total preorder and M ⊆ dom(⪯) a set of worlds
such that ⪯ is coherent with respect to M . For two worlds ω, ω′ ∈ M we have that
dist⪯(ω, ω′) = dist⪯|M (ω, ω′).

Using the two lemmas above we show that ρ∗ fulfils (Condcoh). The following
proposition generalizes a result of [23] to the setting of restricted TPOs and OCFs
introduced here.
Proposition 22 (Condcoh). The epistemic state mapping ρ∗ fulfils (Condcoh).

Proof. Let Σ be a signature, A ∈ LΣ, and ⪯ ∈ MOCF (Σ, A) such that ⪯ is coherent
with respect to F ∈ LΣ. We need to show that ρ∗(⪯|F ) = ρ∗(⪯)|F .

Let ω ∈ Mod Σ(F ∧ A) and ω′ ∈ min(Mod Σ(F ∧ A), ⪯). In the following, we will
denote ρ∗(⪯) with κ⪯. Let n = dist⪯(ω, ω′) be the distance between ω and ω′ in ⪯.
Because ⪯ is coherent with respect to F , we have dist⪯|F (ω, ω′) = dist⪯(ω, ω′) = n
(see Lemma 3). Furthermore, dist⪯|F (ω, ω′) = κ⪯|F (ω) − κ⪯|F (ω′) (see Lemma 2).
Hence, κ⪯(ω) − κ⪯(ω′) = n = κ⪯|F (ω) − κ⪯|F (ω′). Because ω′ was chosen minimal
in Mod Σ(F ∧ A), we have κ⪯|F (ω′) = 0. With this, we have

κ⪯|F (ω) = κ⪯(ω) − κ⪯(F ) = κ⪯(ω) − κ⪯(ω′) = κ⪯|F (ω) − κ⪯|F (ω′) = κ⪯|F (ω)

where the latter equation holds because κ⪯|F (ω′) = 0. Therefore, ρ∗(⪯|F ) = κ⪯|F =
κ⪯|F = ρ∗(⪯)|F .

Similar to (Condcoh), we can also weaken the postulate (Marg) for marginal-
ization by employing the notion of coherence and requiring the set of models in
Mod Σ(A) that are minimal models coinciding with a model from Mod Σ′(A′) to be
coherent.
Postulates. Let (ξΣ,A) be an epistemic state mapping from TPOs to OCFs. Let Σ
be a signature, A ∈ LΣ, and ⪯ ∈ MTPO(Σ, A).

Let Σ′ ⊆ Σ with Σ′ ̸= ∅ and A′ = A|Σ′.

(Margcoh) If ⪯ is coherent with respect to

M = {min({ω ∈ dom(⪯) | ω′ |= ω}, ⪯) | ω′ ∈ Mod Σ′(A′)},

then ξΣ′,A′(⪯|Σ′) = ξΣ,A(⪯)|Σ′.
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The following observation is obvious.
Proposition 23. Postulate (Marg) implies (Margcoh).

The set M in postulate (Margcoh) contains the worlds determining the marginal-
ized ordering ⪯|Σ′ . While ρ∗ does not fulfil (Marg), we show that it fulfils (Margcoh).
For this proof we extend the notion of distance in a TPO to formulas.
Definition 18 (dist⪯(A, B)). Let ⪯ be a restricted TPO over ΩΣ and let A, B
be formulas such that Mod Σ(A) ∩ dom(⪯) ̸= ∅ and Mod Σ(B) ∩ dom(⪯) ̸= ∅ and
A ⪯ B. The distance dist⪯(A, B) between A and B in ⪯ is defined as the small-
est distance between an element of min(Mod Σ(A) ∩ dom(⪯), ⪯) and an element of
min(Mod Σ(B) ∩ dom(⪯), ⪯).

Note that in Definition 18 for every ω ∈ min(Mod Σ(A) ∩ dom(⪯), ⪯) and every
ω′ ∈ min(Mod Σ(B) ∩ dom(⪯), ⪯) the distance dist⪯(ω, ω′) is the same. Hence,
requiring the smallest distance between elements in this definition is not strictly
necessary.
Lemma 4. Let ⪯ be a restricted TPO over ΩΣ and let A, B be formulas over Σ′ ⊆ Σ
such that Mod Σ(A) ∩ dom(⪯) ̸= ∅ and Mod Σ(B) ∩ dom(⪯) ̸= ∅ and A ⪯ B. If ⪯ is
coherent with respect to M = {min({ω ∈ dom(⪯) | ω′ |= ω}, ⪯) | ω′ ∈ Mod Σ′(A′)},
then dist⪯(A, B) = dist⪯|Σ′ (A, B).

Because the ordering ⪯|Σ′ of the worlds over Σ′ follows the ordering of the worlds
M as in ⪯ and because the distances dist⪯ and dist⪯ are based on minimal worlds,
marginalization does not change the distance of the formulas in Lemma 4. Using
this lemma we can prove that ρ∗ fulfils (Margcoh).
Proposition 24 (Margcoh). ρ∗ fulfils (Margcoh).
Proof. Let Σ be a signature, A ∈ LΣ a formula, Σ′ ⊆ Σ a sub-signature, A′ = A|Σ′ ,
and ⪯ ∈ MOCF (Σ, A) such that ⪯ is coherent with respect to M = {min({ω ∈
dom(⪯) | ω′ |= ω}, ⪯) | ω′ ∈ Mod Σ′(A′)}. We need to show that ρ∗(⪯|Σ′) =ρ∗(⪯)|Σ′ .

Let D′ = dom(⪯|Σ′) = Mod Σ′(A′) and let ω ∈ D′ and ω′ ∈ min(D′, ⪯|Σ′). Then
we have

dist⪯|Σ′ (ω, ω′) = κ(⪯|Σ′ )(ω) − κ(⪯|Σ′ )(ω′) = κ(⪯|Σ′ )(ω)
where the first equation holds because of Lemma 2 and the later equation holds
because κ(⪯|Σ′ )(ω′) = 0 as ω′ is chosen minimally. Furthermore, dist⪯|Σ′ (ω, ω′) =
dist⪯(ω, ω′) because ⪯ is coherent with respect to M (see Lemma 4). Additionally,

dist⪯(ω, ω′) = κ⪯(ω) − κ⪯(ω′) (see Lemma 2)
= (κ⪯)|Σ′(ω) − (κ⪯)|Σ′(ω′) = (κ⪯)|Σ′(ω) (see Lemma 1)
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where the latter equation holds because (κ⪯)|Σ′(ω′) = 0 as ω′ is chosen minimally.
Hence, ρ∗(⪯|Σ′) = κ⪯|Σ′ = dist⪯|Σ′ (ω, ω′) = κ⪯|Σ′ = ρ∗(⪯)|Σ′ .

Analogously to (Condcoh) and (Margcoh) we present a weaker version of (SynSplitb)
based on coherence.

Postulates. Let (ξΣ,A) be an epistemic state mapping from TPOs to OCFs. Let Σ
be a signature, A ∈ LΣ, and ⪯ ∈ MTPO(Σ, A).

(SynSplitb
coh) If {Σ1, Σ2} is a syntax splitting for ⪯ and ⪯ is coherent with respect

to
{ω1ω2 | ω1 ∈ dom(⪯|Σ1)} for every ω2 ∈ dom(⪯|Σ2),

then {Σ1, Σ2} is a syntax splitting for ξΣ,A(⪯).

Proposition 25. Postulate (SynSplitb) implies (SynSplitb
coh).

While ρ∗ does not fulfil (SynSplitb), it fulfills the weaker postulate (SynSplitb
coh).

Lemma 5. Let ⪯ be a total preorder and ω1, ω2, ω3 ∈ dom(⪯) be worlds such that
ω1 ⪯ ω2 ⪯ ω3. Then dist⪯(ω1, ω3) = dist⪯(ω1, ω2) + dist⪯(ω2, ω3).

Proposition 26. ρ∗ fulfils (SynSplitb
coh)

Proof. Let Σ be a signature, A ∈ LΣ, and ⪯ ∈ MTPO(Σ, A) a TPO with syntax
splitting {Σ1, Σ2}, such that ⪯ is coherent with respect to {ω1ω2 | ω1 ∈ dom(⪯|Σ1)}
for every ω2 ∈ dom(⪯|Σ2). We need to show that {Σ1, Σ2} is a syntax splitting for
ρ∗(⪯).

Let ω ∈ dom(⪯) be a world, ω1 be the part of ω over Σ1 and ω2 be the part of
ω over Σ2. Let DΣ1 = dom(⪯|Σ1) and DΣ2 = dom(⪯|Σ2). Because of the syntax
splitting, we have dom(⪯) = {ω1ω2 | ω1 ∈ DΣ1 , ω2 ∈ DΣ2}. Let ωmin ∈ min(dom(⪯
), ⪯). We denote the part of ωmin over Σ1 as ω1

min and the part of ωmin over Σ2
as ω2

min . The rank of ω is κ(ω) = dist⪯(ωmin , ω) = dist⪯(ω1
minω2

min , ω1
minω2) +

dist⪯(ω1
minω2, ω1ω2) (see Lemma 5 and Lemma 2).

The syntax splitting ensures that the ordering of the set {ω′1ω2 | ω′1 ∈ DΣ1}
with respect to ⪯ is equivalent to the ordering of the set {ω′1ω2

min | ω′1 ∈ DΣ1} with
respect to ⪯. Hence, ω1

minω2 is minimal in Mod Σ(ω2) = {ω′1ω2 | ω′1 ∈ DΣ1} and
therefore κ⪯(ω2) = κ⪯(ω1

minω2). This yields

dist⪯(ω1
minω2

min , ω1
minω2) = κ⪯(ω1

minω2)︸ ︷︷ ︸
=κ⪯(ω2)

− κ⪯(ω1
minω2

min)︸ ︷︷ ︸
=0

= κ⪯(ω2).
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Because of the syntax splitting, the ordering of the set {ω′1ω2 | ω′1 ∈ DΣ1}
with respect to ⪯ is equivalent to the ordering of DΣ1 with respect to ⪯|Σ1 . Be-
cause of this and because {ω′1ω2 | ω′1 ∈ DΣ1} is coherent with respect to ⪯ we
have dist⪯(ω1

minω2, ω1ω2) = dist⪯|Σ1
(ω1

min , ω1). Additionally, dist⪯|Σ1
(ω1

min , ω1) =
κ⪯|Σ1

(ω1) as ω1
min is minimal with respect to ⪯|Σ2 .

Combining these results yields κ⪯(ω) = κ⪯|Σ1
(ω1) + κ⪯(ω2). Hence, κ⪯ has the

syntax splitting {Σ1, Σ2}.

Finally, we present a weaker version of (SynSplit) using coherence.
Postulates. Let (ξΣ,A) be an epistemic state mapping from TPOs to OCFs. Let Σ
be a signature, A ∈ LΣ, and ⪯∈ MTPO(Σ, A).

(SynSplitcoh) If {Σ1, . . . , Σn} is a syntax splitting for ⪯ and ⪯ is coherent with
respect to

{ω ̸=iωi | ωi ∈ dom(⪯|Σi
)} for every ω ̸=i ∈ dom(⪯|Σ\Σi

)
for every i ∈ {1, . . . , n},

then {Σ1, . . . , Σn} is a syntax splitting for ξΣ,A(⪯).

Proposition 27. Postulate (SynSplit) implies (SynSplitcoh).
While ρ∗ does not fulfil (SynSplit), it does satisfy (SynSplitcoh).

Proposition 28. ρ∗ fulfils (SynSplitcoh).
Proof. Let Σ be a signature, A ∈ LΣ, and ⪯ ∈ MTPO(Σ, A) a TPO with syn-
tax splitting {Σ1, . . . , Σn}, such that ⪯ is coherent with respect to {ω ̸=iωi | ωi ∈
dom(⪯|Σi

)} for every ω ̸=i ∈ dom(⪯|Σ\Σi
) for every i ∈ {1, . . . , n}. We need to show

that {Σ1, . . . , Σn} is a syntax splitting for κ = ρ∗(⪯).
Let ω be any world in dom(⪯) and let ωmin be a world in dom(⪯) that is

minimal with respect to ⪯. Let ω⩽0
min = ωmin , let ω⩽1

min = ω1ω2
min . . . ωn

min , let ω⩽2
min =

ω1ω2ω3
min . . . ωn

min , and so on until ω⩽n
min = ω. Using Lemma 5 repeatedly we have

κ(ω) =dist⪯(ωmin , ω)
= dist⪯(ω⩽0

min , ω⩽1
min) + dist⪯(ω⩽1

min , ω⩽2
min) + · · · + dist⪯(ω⩽n−1

min , ω⩽n
min).

We have dist⪯(ω⩽k−1
min , ω⩽k

min) = dist⪯(ωk
min , ωk) = ρ∗(⪯|Σk

)(ωk) for k = 1, . . . , n

because {ω ̸=kω′k | ω′k ∈ dom(⪯|Σk
)} is coherent. Hence, κ(ω) = dist⪯(ωmin , ω) =

ρ∗(⪯|Σ1)(ω1) + · · · + ρ∗(⪯|Σn
)(ωn) and therefore κ = ρ∗(⪯|Σ1) ⊕ · · · ⊕ ρ∗(⪯|Σn

). This
shows that {Σ1, . . . , Σn} is a syntax splitting for ρ∗(⪯).
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In summary, we observe that the postulates (Condcoh), (Margcoh), (SynSplitb
coh),

and (SynSplitcoh) are fulfilled simultaneously by the epistemic state mapping ρ∗ from
Definition 14. In contrast to the stronger postulates (Cond), (Marg), (SynSplitb),
and (SynSplit) these postulates require certain sets of worlds to be coherent in the
considered TPO in order to be applicable.

7 Conclusions and Future Work
In this article, we introduced the notion of epistemic state mappings, i.e., map-
pings among OCFs and TPOs. We proposed postulates for epistemic state map-
pings that ensure the preservation of certain properties of the epistemic state across
the mapping. The properties considered in this article include the set of entailed
conditionals and syntax splitting. Other postulates ensure compatibility with the
operations marginalization and conditionalization. Furthermore, we investigated the
relationships among the proposed postulates in general and for each combination of
the considered framework. Some postulates are entailed by other postulates, e.g.,
(SynSplit) entails (SynSplitb) and (IE) is equivalent to (Ord). We also showed that
there are constellations and combinations of the postulates which cannot be satisfied
simultaneously, e.g., there is no epistemic state mapping from TPOs to OCFs that
fulfils both (wIE⇒) and (SynSplitb). The only epistemic state mapping from TPOs
to OCFs that fulfils both (wIE⇐) and (SynSplitb) is the trivial mapping of every
TPO to κuni, the state where every world is equally plausible. Using the notion
of coherence, which is highly relevant e.g. for the concept of kinematics in belief
revision [23, 32], we formulated weaker versions of the postulates for epistemic state
mappings from TPOs to OCFs that avoid this incompatibility result.

Our current work includes extending the investigation of epistemic state map-
pings and their properties for establishing further relationships between OCFs and
TPOs and thus to transfer more results between the two frameworks. Furthermore,
we will consider epistemic state mappings among particular subclasses of TPOs and
OCFs. We expect to find interesting and relevant subclasses such that epistemic
state mappings over these subclasses fulfil combinations of postulates that are not
fulfilled by epistemic state mappings over the full sets of TPOs and OCFs. Future
work also includes using the insights of this paper to transfer tools and methods
from the framework of TPOs to OCFs and vice versa.
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Abstract
In this article, we present a proof-theoretical and model-theoretical approach

to probabilistic logic for reasoning about uncertainty about normative state-
ments. We introduce two logics with languages that extend both the language
of monadic deontic logic and the language of probabilistic logic. The first logic
allows statements like “the probability that one is obliged to be quiet is at least
0.9”. The second logic allows iteration of probabilities in the language. We
axiomatize both logics, provide the corresponding semantics and prove that the
axiomatizations are sound and complete. We also prove that both logics are
decidable. In addition, we show that the problem of deciding satisfiability for
the simpler of our two logics is in PSPACE, no worse than that of deontic logic.

Keywords: MDL; Normative reasoning; Probabilistic logic; Completeness;
Decidability.

This paper is a revised and extended version of our conference paper [20] presented at the
Sixteenth European Conference on Symbolic and Quantitative Approaches to Reasoning with Un-
certainty (ECSQARU 2021), in which we introduced a logic for reasoning about probabilities of a
deontic statement, provided a complete axiomatization for the logic and proved its decidability. In
this paper, we extend those results, by providing the complexity result for the satisfiability prob-
lem. Additionally, we also present in this paper another, richer logic with nesting of probability
operators. For that novel logic we also provide an axiomatization, prove its completeness, and show
that the logic is decidable.
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1 Introduction

Norms govern many parts of human life and these norms need to be learned at
some point. This means that before a norm is learned there is uncertainty about
whether a norm holds or not. To formalize this notion a probabilistic deontic logic
is developed in this paper. The seminal work of von Wright from 1951 [21] initiated
a systematic study on the formalization of normative reasoning in terms of deontic
logic. The latter is a branch of modal logic that deals with obligation, permission,
and related normative concepts. A plethora of deontic logics have been developed
for various application domains like legal reasoning, argumentation theory, and nor-
mative multi-agent systems [1, 5, 11].

Some recent work studied learning of behavioral norms from data [16, 18]. In
[16] the authors pointed out that human norms are context-specific and laced with
uncertainty, which poses challenges to their representation, learning, and communi-
cation. They gave an example of a learner that might conclude from observations
that talking is prohibited in a library setting, while another learner might conclude
the opposite when seeing people talking at the checkout counter. They represented
uncertainty about norms using deontic operators equipped with probabilistic bound-
aries that capture the subjective degree of certainty.

In this paper, we study uncertain norms from a logical point of view. We use
probabilistic logic [6, 7, 8, 10, 17, 19] to represent uncertainty, and we present the
proof-theoretical and model-theoretical approach to a logic which allows reasoning
about uncertain normative statements. We take two well-studied logics, monadic de-
ontic logic (MDL) [14] and probabilistic logic of Fagin, Halpern, and Magido (FHM)
[7], as the starting point, and combine them in a rich formalism that generalizes
each of them. The resulting language makes it possible to adequately model dif-
ferent degrees of belief in norms; for example, we can express statements like “the
probability that one is obliged to be quiet is at least 0.9”.

The semantics for our main logic PMDL consists of specific Kripke-like struc-
tures, where each model contains a probability space whose sample space is the set
of states, and with each state carrying enough information to evaluate a deontic
formula. We consider so-called measurable models, which allow us to assign a prob-
ability value to every deontic statement. We also propose another, richer language
PMDL2 which allows nesting of probability operators. In this case, the semantics
is naturally generalized i.e. that all states are equipped with probability spaces. In
addition to the nesting of operators, we modify the language in such a way that we
allow different agents to place (possibly different) probabilities on norms and events.
So the formulas can express one’s uncertainty about another person’s uncertainty
about norms.
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The main result of this article is a sound and complete axiomatization for our
logics. Like any other real-valued probabilistic logic, it is not compact, so any
finitary axiomatic system would fail to be strongly complete (“every consistent set
of formulas has a model”) [10]. We prove weak completeness (“every consistent
formula has a model”) by combining and modifying completeness techniques for
MDL and FHM. We also show that our logics are decidable; combining the method
of filtration and a reduction to a system of inequalities. In addition, we show that
the problem of deciding satisfiability for the logic PMDL is in PSPACE, no worse
than that of deontic logic.

The rest of the paper is organized as follows: In Section 2, the proposed syntax
and semantics of the logic will be presented together with other needed definitions.
In Section 3, the axiomatization of the logic is given; in section 4, soundness and
completeness is proven. In Section 5, we show that our logic is decidable; in Section
6, the probability structure of the logic is changed such that iterations of probabilities
are possible, and completeness and decidability is proven. Lastly, in Section 7, a
conclusion is given together with future research topics.

2 Syntax and Semantics
In this section, we present the syntax and semantics of our probabilistic deontic
logic. This logic, which we named PMDL, contains two types of formulas: stan-
dard deontic formulas of MDL, and probabilistic formulas. Let N denote the set of
integers.

Definition 1 (Formula). Let P be a set of atomic propositions. The language L of
probabilistic MDL is generated by the following two sentences of BNF (Backus Naur
Form):

[LMDL] ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | Oϕ p ∈ P
[LPMDL] f ::= a1w(ϕ1) + · · · + anw(ϕn) ≥ α | ¬f | (f ∧ f) ai, α ∈ N

The set of all formulas L is LMDL ∪ LPMDL. We denote the elements of L with θ
and θ’, possibly with subscripts.

The construct Oϕ reads as “It is obligatory that ϕ”, while w(ϕ) stands for “prob-
ability of ϕ”. An expression of the form a1w(ϕ1) + · · · + anw(ϕn) is called term. We
denote terms with x and t, possibly with subscripts. The propositional connectives,
∨, → and ↔, are introduced as abbreviations, in the usual way. There are also two
additional deontic operators that denote the following: forbidden, Fϕ ≡ O¬ϕ ; and
permitted Pϕ ≡ ¬Fϕ∧¬Oϕ. We abbreviate θ∧¬θ with ⊥, and ¬⊥ with ⊤. We also
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use abbreviations to define other types of inequalities; for example, w(ϕ) ≥ w(ϕ′) is
an abbreviation for w(ϕ) − w(ϕ′) ≥ 0, w(ϕ) = α for w(ϕ) ≥ α and −w(ϕ) ≥ −α,
w(ϕ) < α for ¬w(ϕ) ≥ α.

It is very important to mention that we can also use abbreviations that allow us
to see rational numbers as coefficients of terms i.e. they can be eliminated from any
formula by clearing the denominator. For example, the formula

2
3 t1 + 3

4 t2 ≥ 1

is simply an abbreviation for 8t1 + 9t2 ≥ 12.

Example 1. Following our informal example from the introduction about behavioral
norms in a library, the fact that a person has become fairly certain that it is normal
to be quiet might be expressed by the probabilistic statement “the probability that one
is obliged to be quiet is at least 0.9”. This sentence could be formalized using the
introduced language as

w(Oq) ≥ 0.9.

Note that we do not allow mixing of the formulas from LMDL and LPMDL.
For example, O(p ∨ q) ∧ w(Oq) ≥ 0.9 is not a formula of our language. Before we
introduce the semantics of PMDL we will introduce MDL models.

Definition 2 (MDL model). An MDL model D is a tuple D = (W,R, V ) where:

• W is a (non-empty) set of “possible worlds”; W is called the universe of the
model.

• R ⊆ W ×W is a binary relation over W , such that

(∀w ∈ W )(∃u ∈ W )(wRu). (seriality)

If (w, u) ∈ R, we say that u is an R−successor of w.

• V : P → 2W is a valuation function assigning to each atom p a set V (p) ⊆ W
(intuitively the set of worlds at which p is true.)

We denote the set of all MDL models with D. As formalized in the following
definition, the relation R relates worlds to worlds, with the intention that everything
obligatory at a world holds in its R−successors.

Next, we define the satisfiability relation of MDL.
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Definition 3 (Satisfaction in MDL). Let D = (W,R, V ) be an MDL model, and let
w ∈ W . We define the satisfiability of a deontic formula ϕ ∈ LMDL in the world w,
denoted by D,w |=MDL ϕ, recursively as follows:

• D,w |=MDL p iff w ∈ V (p).

• D,w |=MDL ¬ϕ iff D,w ̸|=MDL ϕ.

• D,w |=MDL ϕ ∧ ψ iff D,w |=MDL ϕ and D,w |=MDL ψ.

• D,w |=MDL Oϕ iff for all u ∈ W , if wRu then D,u |=MDL ϕ.

Now we introduce the semantics of PMDL.

Definition 4 (PMDL Model). A probabilistic deontic model is a tuple M = ⟨S,X ,
µ, τ⟩, where

• S is a non-empty set of states

• X is a σ-algebra of subsets of S

• µ : X → [0, 1] is a probability measure, i.e.,

– µ(X) ≥ 0 for all X ∈ X

– µ(S) = 1
– µ(⋃∞

i=1Xi) = ∑∞
i=1 µ(Xi), if the Xi’s are pairwise disjoint members of

X

• τ is a function that assigns to each state in S a pair consisting of an MDL
model and a world of that model, i.e., τ : s 7→ (Ds, ws), where:

– Ds = (Ws, Rs, Vs) ∈ D
– ws ∈ Ws

Let us illustrate this definition.

Example 1. (continued) Assume a finite set of atomic propositions {p, q}. Let us
consider the model M = ⟨S,X , µ, τ⟩, where

• S = {s1, s2, s3, s4}

• X is the set of all subsets of S
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• µ is characterized by: µ({s1}) = 0.5, µ({s2}) = µ({s3}) = 0.2, µ({s4}) = 0.1
(other values follow from the properties of probability measures)

• τ is a mapping which assigns to the state s1, Ds1 = (Ws1 , Rs1 , Vs1) and ws1

such that

– Ws1 = {w1, w2, w3, w4}
– Rs1 = {(w1, w2), (w1, w3), (w2, w2), (w2, w3), (w3, w2), (w3, w3), (w4, w2),

(w4, w3), (w4, w4)}
– Vs1(p) = {w1, w3}, Vs(q) = {w2, w3}
– ws1 = w1

Note that the domain of τ is always the whole set S, but in this example
we only explicitly specify τ(s1) for illustration purposes.

This model is depicted in Figure 1. The circle on the right contains the four states of
the model, which are measured by µ. Each of the states is equipped with a standard
pointed model of MDL. In this picture, only one of them is shown, the one that
corresponds to s1. It is represented within the circle on the left. Note that the

p
ws1 = w1

qw2

p, q

w3

w4

s2

s1 s3

s4

M

S µ

τ

Ds1

Ws1

Figure 1: Model M = ⟨S,X , µ, τ⟩.

arrows depict the relation R. If we assume that q stands for “quiet”, like in the
previous example, in all R−successors of w1 the proposition q holds. Note that,
according to Definition 3, this means that in w1 people are obliged to be quiet in the
library.

For a model M = ⟨S,X , µ, τ⟩ and a formula ϕ ∈ LMDL, let ∥ϕ∥M denote
the set of states that satisfy ϕ, i.e., ∥ϕ∥M = {s ∈ S | Ds, ws |=MDL ϕ}. We
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omit the subscript M from ∥ϕ∥M when it is clear from context. The following
definition introduces an important class of probabilistic deontic models, the so-called
measurable models.

Definition 5 (Measurable model). A probabilistic deontic model is measurable if

∥ϕ∥M ∈ X

for every ϕ ∈ LMDL. Denote the class of all measurable models of PMDL by
PMDLMeas.

In this paper, we focus on measurable structures, and we prove soundness &
completeness, and decidability results for this class of structures.

Definition 6 (Satisfaction). Let M = ⟨S,X , µ, τ⟩ ∈ PMDLMeas be a measurable
probabilistic deontic model. We define the satisfiability relation |= recursively as
follows:

• M |= ϕ iff Ds, ws |=MDL ϕ holds for every s ∈ S, where τ(s) = (Ds, ws)

• M |= a1w(ϕ1) + · · · + akw(ϕk) ≥ α iff a1µ(∥ϕ1∥) + · · · + akµ(∥ϕk∥) ≥ α.

• M |= ¬f iff M ̸|= f

• M |= f ∧ g iff M |= f and M |= g

Example 1. (continued) Continuing the previous example, it is now also possi-
ble to speak about the probability of the obligation to be quiet in a library. First,
according to Definition 3 it holds that Ds1 , ws1 |=MDL Oq. Furthermore, assume
that τ is defined in the way such that Ds2 , ws2 |=MDL Oq and Ds3 , ws4 |=MDL Oq,
but Ds4 , ws4 ̸|=MDL Oq. Then µ(∥Oq∥) = µ({s1, s2, s3}) = 0.5 + 0.2 + 0.2 = 0.9.
According to Definition 6, M |= w(Oq) ≥ 0.9.

Note that, according to Definition 6, a deontic formula is true in a model iff
it holds in every state of the model. This is a consequence of our design choice
that those formulas represent undisputable deontic knowledge, while probabilistic
formulas express uncertainty about norms. At the end of this section, we define
some standard semantical notions.

Definition 7 (Semantical consequence). Given a set Γ of formulas, a formula θ
is a semantical consequence of Γ (notation: Γ |= θ) whenever all the states of the
model have, if M, s |= θ′ for all θ′ ∈ Γ, then M, s |= θ.

Definition 8 (Validity). A formula θ is valid (notations: |= θ) whenever for M =
⟨S,X , µ, τ⟩ and every s ∈ S: M, s |= θ holds.
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3 Axiomatization
The following axiomatization contains 13 axioms and 3 inference rules. It combines
the axioms of proof system D of MDL [14] with the axioms of probabilistic logic.
The axioms for reasoning about linear inequalities are taken from [7].

The Axiomatic System: AXPMDL

Tautologies and Modus Ponens

Taut. All instances of propositional tautologies.

MP. From θ and θ → θ′ infer θ′.

Reasoning with O:

O-K. O(ϕ → ψ) → (Oϕ → Oψ)

O-D. Oϕ → Pϕ

O-Nec. From ϕ infer Oϕ

Reasoning about linear inequalities:

I1. x ≥ x (identity)

I2. (a1x1 + ...+akxk ≥ c) ↔ (a1x1 + ...+akxk + 0xk+1 ≥ c) (adding and deleting
0 terms)

I3. (a1x1 +...+akxk ≥ c) → (aj1xj1 +...+ajkxjk ≥ c), if j1, ..., jk is a permutation
of 1, ..., k (permutation)

I4. (a1x1+...+akxk ≥ c)∧(a′
1x1+...+a′

kxk ≥ c′) → ((a1+a′
1)x1+...+(ak+a′

k)xk ≥
(c+ c′)) (addition of coefficients)

I5. (a1x1 + ...+ akxk ≥ c) ↔ (da1x1 + ...+ dakxk ≥ dc) if d > 0 (multiplication
of non-zero coefficients)

I6. (t ≥ c) ∨ (t ≤ c) if t is a term (dichotomy)

I7. (t ≥ c) → (t > d) if t is a term and c > d (monotonicity)
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Reasoning about probabilities:
W1. w(ϕ) ≥ 0 (non-negativity).

W2. w(ϕ∨ψ) = w(ϕ) +w(ψ), if ¬(ϕ∧ψ) is an instance of a classical propositional
tautology (finite additivity).

W3. w(⊤) = 1

P-Dis. From ϕ ↔ ψ infer w(ϕ) = w(ψ) (probabilistic distributivity)
The axiom Taut allows all LMDL-instances and LPMDL-instances of proposi-

tional tautologies. For example, w(Oq) ≥ 0.9 ∨ ¬w(Oq) ≥ 0.9 is an instance of
Taut, but w(Oq) ≥ 0.9 ∨ ¬w(Oq) ≥ 1 is not. Note that Modus Ponens (MP) can
be applied to both types of formulas, but only if θ and θ′ are both from LMDL or
both from LPMDL. O-Nec is a deontic variant of necessitation rule. P-Dis is an
inference rule which states that two equivalent deontic formulas must have the same
probability values.
Definition 9 (Syntactical consequence). A derivation of θ is a finite sequence
θ1, . . . , θm of formulas such that θm = θ, and every θi is either an instance of
an axiom, or it is obtained by the application of an inference rule to formulas in
the sequence that appear before θi. If there is a derivation of θ, we say that θ is a
theorem and write ⊢ θ. We also say that θ is derivable from a set of formulas Γ, and
write Γ ⊢ θ, if there is a finite sequence θ1, . . . , θm of formulas such that θm = θ,
and every θi is either a theorem, a member of Γ or the result of an application of
MP or P-Dis to formulas in the sequence that appear before θi.

Note that this definition restricts the application of O-Nec. to theorems only.
This is a standard restriction for modal necessitations, which enables one to prove
the Deduction Theorem using induction on the length of the inference. Also, note
that only deontic formulas can participate in a proof of another deontic formula,
thus derivations of deontic formulas in our logic coincide with their derivations in
MDL.
Definition 10 (Consistency). A set Γ is consistent if Γ ̸⊢ ⊥, and inconsistent
otherwise.

Now we prove some basic consequences of AXPMDL. The first one is the prob-
abilistic variant of necessitation. It captures the semantical property that a deontic
formula represents undisputable knowledge, and therefore it must have a probability
value of 1. The second point states that we can derive from the axiomatization that
the weight of falsum equals zero. The third part of the lemma shows that a form of
additivity proposed as an axiom in [7] is provable in AXPMDL.
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Lemma 1. The following rules are derivable from our axiomatization:

1. From ϕ infer w(ϕ) = 1

2. ⊢ w(⊥) = 0

3. ⊢ w(ϕ ∧ ψ) + w(ϕ ∧ ¬ψ) = w(ϕ).

Proof.

1. Let us assume that a formula ϕ is derived. Then, using propositional reasoning
(Taut and MP), one can infer ϕ ↔ ⊤. Consequently, w(ϕ) = w(⊤) follows
from the rule P-Dis. Since we have that w(⊤) = 1 (by W3), we can employ
the axioms for reasoning about inequalities to infer w(ϕ) = 1.

2. Then to show that w(⊥) = 0 using finite additivity (W2) w(⊤∨¬⊤) = w(⊤)+
w(¬⊤) = 1 and so w(¬⊤) = 1 − w(⊤). Since w(⊤) = 1 and ¬⊤ ↔ ⊥ we can
derive w(⊥) = 0.

3. To derive additivity we begin with the propositional tautology, ¬((ϕ ∧ ψ) ∧
(ϕ∧ ¬ψ)) then the following equation is given by W2 w(ϕ∧ψ) +w(ϕ∧ ¬ψ) =
w((ϕ ∧ ψ) ∨ (ϕ ∧ ¬ψ)). The disjunction (ϕ ∧ ψ) ∨ (ϕ ∧ ¬ψ) can be rewritten
to, ϕ∧ (ψ ∨ ¬ψ) which is equivalent to ϕ. From ϕ ↔ (ϕ∧ψ) ∨ (ϕ∧ ¬ψ), using
P-Dis, we obtain w(ϕ) = w(ϕ ∧ ψ) + w(ϕ ∧ ¬ψ).

4 Soundness & Completeness
In this section, we prove that our logic is sound and complete with respect to the
class of measurable models; combining, adapting and following the approaches from
[7, 3].

Theorem 1 (Soundness & Completeness). The axiom system AXPMDL is sound
and complete with respect to the class of measurable models PMDLMeas, i.e., ⊢ θ
iff |= θ.

Proof. The proof of soundness is straightforward. To prove completeness, we need
to show that every consistent formula θ is satisfied in a measurable model. Since we
have two types of formulas, we distinguish two cases.

If θ ∈ LMDL we write θ as ϕ. Since ϕ is consistent and MDL is complete [14], we
know that there is an MDL model (W,R, V ) and w ∈ W such that (W,R, V ), w |= ϕ.
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Then, for any probabilistic deontic model M with only one state s and τ(s) =
((W,R, V ), w) we have M, s |= ϕ, and therefore M |= ϕ (since s is the only state);
so the formula is satisfiable.

When θ ∈ LPMDL we write θ as f . Then f is consistent and we prove that
f is satisfiable. First notice that f can be equivalently rewritten as a formula in
disjunctive normal form,

f ↔ g1 ∨ · · · ∨ gn (1)
this means that satisfiability of f can be proven by showing that one of the disjuncts
gi of the disjunctive normal form of f is satisfiable. Note that every disjunct is of
the form:

gi =
r∧

j=1
(
∑

k

aj,kw(ϕj,k) ≥ cj) ∧
r+s∧

j=r+1
¬(

∑

k

aj,kw(ϕj,k) ≥ cj). (2)

To show that gi is satisfiable we will substitute each weight term w(ϕj,k) by a
sum of weight terms that take as arguments formulas from the set ∆ that will be
constructed below. For any formula θ, let us denote the set of subformulas of θ
by Sub(θ). Then, for considered, gi we introduce the set of all deontic subformulas
SubDL(gi) = Sub(gi)∩LMDL. We create the set ∆ as the set of all possible formulas
that are conjunctions of formulas from SubDL(gi) ∪ {¬e | e ∈ SubDL(gi)}, such that
for every e either e or ¬e is taken as a conjunct (but not both). Then we can prove
the following two claims about the set ∆:

• The conjunction of any two different formulas δk and δl from ∆ is inconsistent:
⊢ ¬(δk∧δl). This is the case because for each pair of δ’s at least one subformula
e ∈ SubDL(gi) such that δk ∧ δl ⊢ e∧ ¬e and e∧ ¬e ⊢ ⊥. If there is no such e,
then by construction δk = δl.

• The disjunction of all δ’s in ∆ is a tautology: ⊢ ∨
δ∈∆ δ. Indeed, it is clear

from the way the set ∆ is constructed, that the disjunction of all formulas is
an instance of a propositional tautology.

As noted earlier, we will substitute each term of each weight formula of gi with
a sum of weight terms. This can be done by using the just introduced set ∆ and
the set Φ, which we define as the set containing all deontic formulas ϕj,k that occur
in the weight terms of gi. In order to get all the relevant δ’s to represent a weight
term, we construct for each ϕ ∈ Φ the set ∆ϕ = {δ ∈ ∆ | δ ⊢ ϕ} which contains all
δ’s that imply ϕ. Then we can derive the following equivalence:

⊢ ϕ ↔
∨

δ∈∆ϕ

δ.
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From the rule P-Dis we obtain

⊢ w(ϕ) = w(
∨

δ∈∆ϕ

δ).

Since any two elements of ∆ are inconsistent, from W2 and axioms about inequalities
we obtain

⊢ w(
∨

δ∈∆ϕ

δ) =
∑

δ∈∆ϕ

w(δ).

Consequently, we have
⊢ w(ϕ) =

∑

δ∈∆ϕ

w(δ). (3)

Note that some of the formulas δ’s might be inconsistent (for example, a formula
from ∆ might be a conjunction in which both O(p∧q) and Fp appear as conjuncts).
For an inconsistent formula δ, we have ⊢ δ ↔ ⊥ and, consequently ⊢ w(δ) = 0,
by the inference rule P-Dis. This provably filters out the inconsistent δ’s from each
weight formula, using the axioms about linear inequalities. Thus, without any loss
of generality, we can assume in the rest of the proof that all the formulas from ∆
are consistent2.

Lets us consider a new formula f ′, created by substituting each term of each
weight formula of gi from (1), thus transforming each conjunct (2) into

g′
i =




r∧

j=1
(
∑

k

aj,k
∑

δ∈∆ϕj,k

w(δ) ≥ cj)


 ∧




r+s∧

j=r+1
¬(

∑

k

aj,k
∑

δ∈∆ϕj,k

w(δ) ≥ cj)




Since consistency of the formula f is equivalent to consistency of one of its disjuncts
gi from (1), in the rest of the proof we will focus on one such disjunct, gi. Note
that (3) implies that gi and g′

i are two provably equivalent formulas (and the same
holds for f and f ′). Then we will construct g′′

i by adding to g′
i: a non-negativity

constraint and an equality that binds the total probability weight of δ’s to 1. In
other words, g′′

i is the conjunction of the following formulas:

2We might introduce ∆c and ∆c
ϕ as the sets of all consistent formulas from ∆ and ∆ϕ, respec-

tively, but since we will still have ⊢ w(ϕ) =
∑

δ∈∆c
ϕ

w(δ), we prefer not to burden the notation with
the superscripts in the rest of the proof, and we assume that we do not have inconsistent formulas
in ∆.
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∑

δ∈∆
w(δ) = 1

∀δ ∈ ∆ w(δ) ≥ 0
∀l ∈ {1, . . . , r}

∑

k

al,k
∑

δ∈∆ϕl,k

w(δ) ≥ cl

∀l ∈ {r + 1, . . . , r + s}
∑

k

al,k
∑

δ∈∆ϕl,k

w(δ) < cl

Since the weights can be attributed independently while respecting the system of
equations and inequalities, the formula g′′

i is satisfiable iff the corresponding system
of equations and inequalities, that we denote by Sys(g′′

i ) is solvable:

|∆|∑

i=1
xi = 1

∀i ∈ {1, . . . , |∆|} xi ≥ 0

∀l ∈ {1, . . . , r}
∑

k

al,k

|∆ϕl,k
|∑

i=1
xi ≥ cl

∀l ∈ {r + 1, . . . , r + s}
∑

k

al,k

|∆ϕl,k
|∑

i=1
xr+i < cl

Initially we considered a consistent formula gi and transformed it to a provably
equivalent formula g′′

i . Proving satisfiability of g′′
i is equivalent to proving satisfia-

bility of gi; since the set of models of g′′
i coincides with the set of models of g′

i, which
in turn has the same models as gi.

Using proof from the incongruous we assume g′′
i to be unsatisfiable and show

that this leads to a contradiction. Since g′′
i is assumed unsatisfiable this means that

the system of linear inequalities Sys(g′′
i ) does not have a solution. This further

means that in the process of solving the system Sys(g′′
i ) (using any procedure for

solving linear inequalities, e.g. we can use Fourier–Motzkin elimination) we would
obtain an equivalent system containing an equation or inequality without solutions.
Without any loss of generality, assume that the obtained formula is 0 = 1. Now,
since we have the axioms I1-I7 as a part of our AXPMDL, we can “syntactically”
derive all those corresponding steps (of transforming inequalities using the procedure
for solving linear inequalities) from g′′

i using our axiomatization, and therefore we
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obtain that 0 = 1 is a formula (of our logic PMDL) that can be derived from g′′
i .

That means g′′
i is inconsistent, which is a contradiction because we started with gi

as a consistent formula.

5 Decidability
In this section, we prove that our logic PMDL is decidable, and we show that there
is a decidability procedure for the problem that runs in polynomial space. First, let
us recall the satisfiability problem: given a formula θ, we want to determine if there
exists a model M such that M |= θ.

Theorem 2 (Decidability). Satisfiability problem for PMDL is decidable.

Proof. Since we have two types of formulas, we will consider two cases. First, let
us assume that θ ∈ LMDL. We start with the well-known result that the problem
of whether a formula from LMDL is satisfiable in an MDL model is decidable [14].
It is sufficient to show that each θ ∈ LMDL is satisfiable in an MDL model iff it is
satisfiable under our semantics. First, if (W ′, R′, V ′), w′ |= θ for some deontic model
(W ′, R′, V ′) and w′ ∈ W ′, let us construct the model M = ⟨S,X , µ, τ⟩, with S =
{s}, X = {∅, S}, µ(S) = 1 and τ(s) = ((W ′, R′, V ′), w′). Since (W ′, R′, V ′), w′ |= θ,
then M, s |= θ. From the fact that s is the unique state of M , we conclude that
M |= θ. On the other hand, if θ is not satisfiable in MDL, then for every M =
⟨S,X , µ, τ⟩ and s ∈ S we will have M, s ̸|= θ, so M ̸|= θ.

Now, let us consider the case θ ∈ LPMDL. In the proof, we use the method of
filtration [12, 3], and reduction to finite systems of inequalities. We only provide a
sketch of the proof, since we use similar ideas as in our completeness proof. We will
also use the notation introduced in the proof of completeness. In the first part of
the proof, we show that a formula is satisfiable iff it is satisfiable in a model with a
finite number of (1) states and (2) worlds.

(1) First we show that if θ ∈ LPMDL is satisfiable, then it is satisfiable in a
model with a finite set of states, whose size is at most 2|SubDL(θ)| (where SubDL(θ)
is the set of deontic subformulas of θ, as defined in the proof of Theorem 1). Let
M = ⟨S,X , µ, τ⟩ be a model such that M |= θ. Let us define by ∼ the equivalence
relation over S×S in the following way: s ∼ s2 iff for every ϕ ∈ SubDL(θ), M, s |= ϕ
iff s2 |= ϕ. Then the corresponding quotient set S/∼ is finite and |S/∼| ≤ 2|SubDL(θ)|.
Note that every Ci belongs to X , since it corresponds to a formula δi of ∆ (from the
proof of Theorem 1), i.e., Ci = ∥δi∥. Next, for every equivalence class, Ci we choose
one element and denote it si. Then we consider the model M ′ = ⟨s2,X ′, µ′, τ ′⟩,
where:
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• s2 = {si | Ci ∈ S/∼},

• X ′ is the power set of s2,

• µ′({si}) = µ(Ci) such that si ∈ Ci and for any X ⊆ s2,
µ′(X) = ∑

si∈X µ
′({si}),

• τ ′(si) = τ(si).

Then it is straightforward to verify that M ′ |= θ. Moreover, note that, by definition
of M ′, for every si ∈ s2 there is δi ∈ ∆ such that M ′, si |= δi, and that for every
sj ̸= si we have M ′, sj ̸|= δi. We therefore say that δi is the characteristic formula
of si.

(2) Even if s2 is finite, some sets of worlds attached to a state might be infinite.
Now we will modify τ ′, to ensure that every W (si) is finite, and of the size which
is bounded by a number that depends on the size of θ. In this part of the proof,
we refer to the filtration method used to prove completeness of MDL [3], which
shows that if a deontic formula ϕ is satisfiable, it is satisfied in a world of a model
D(ψ) = (W,R, V ) where the size of W is at most exponential wrt. the size of the
set of subformulas of ϕ. Then we can replace τ ′ with a function τ ′′ which assigns to
each si one such D(δi) and the corresponding world, where δi is the characteristic
formula of si. We also assume that each V (si) is restricted to the propositional
letters from SubDL(θ). Finally, let M ′′ = ⟨s2,X ′, µ′, τ ′′⟩ It is easy to check that for
every ϕ ∈ SubDL(θ) and si ∈ s2, M ′, si |= ϕ iff M ′′, si |= ϕ. Therefore, M ′′ |= θ.

From the steps (1) and (2) it follows that in order to check if a formula θ ∈
LPMDL is satisfiable, it is enough to check if it is satisfied in a model M =
⟨S,X , µ, τ⟩ in which S and each Ws (for every s ∈ S) are of finite size, bounded
from above by a fixed number depending on the size of |SubDL(θ)|. Then there are
finitely many options for the choice of S and τ (i.e., (Ds, ws), for every s ∈ S), and
our procedure can determine in finite time whether there is a probability measure
µ for some of them, such that θ holds in the model. We convert our formula f into
a formula in the complete disjunctive form as in (1). We guess S and τ and check
whether we can assign probability values to the states from S, considering each dis-
junct gi and using translation to a system of linear inequalities, in the same way as
we have done in the proof of Theorem 1. This finishes the proof since the problem
of checking whether a linear system of inequalities has a solution is decidable.

Moreover, we show that there is a procedure that decides the satisfiability of any
formula of PMDL in PSPACE.
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Theorem 3. There is a procedure that decides whether a formula of the logic
PMDL is satisfiable in a measurable structure from PMDLMeas which runs in
polynomial space.

Proof. Let us first consider the formulas from MDL. Recall that in the proof of
Theorem 2 we have shown that each θ ∈ LMDL is satisfiable in an MDL model
iff it is satisfiable under our semantics. Thus we can use the result that there is
a procedure for deciding whether a formula θ ∈ LMDL is satisfiable, that runs in
polynomial space [13].

For probabilistic formulas, we want to use some parts of the proof of Theorem
2 (which in turn uses the proof of Theorem 1). Here we will use all the notations
introduced in the proofs: Theorem 1 and Theorem 2. First, note that in the proof
of Theorem 2 we proved, using filtration, that if a formula f is satisfiable, then
it is satisfied in a model M ′ = ⟨s2,X ′, µ′, τ ′⟩ with m states, where m at most
2|SubDL(f)|, i.e., s2 = {s1, . . . , sm}, and where each state si ∈ s2 is represented by its
characteristic formula δi ∈ ∆. Now we will show that we can reduce the size of the
set of states even more. Let DS(f) denote the set of all deontic formulas ϕ such that
w(ϕ) is a term that appears in the formula f (i.e., w(ϕ) is a sub-expression of f),
Let us consider the set of equations and inequalities over the variables x1, . . . , xm:

x1 + · · · + xm = 1, (4)

x1 ≥ 0, x2 ≥ 0, . . . xm ≥ 0, (5)

and, for each ϕ ∈ DS(f), the equation
∑

δi∈∆ϕ

xi = µ′(∥ϕ∥M ′), (6)

where ∆ϕ = {δ ∈ ∆ | δ ⊢ ϕ}. Here we employ the result form linear algebra which
states that if a system of k linear equations has a non-negative solution, then it has
a non-negative solution where at most k values are different than zero [4]. Since the
above system has one solution, namely

(x1, . . . , xm) = (µ′({δ1}), , . . . , µ′({δm})),

then the system of equations (4) and (6) has a non-negative solution with at most
k(f) = |DS(f)| + 1 values different than zero (note that when we calculate the
number of equations, we ignore (5), since it simply states non-negativity, which is
already assumed). Without any loss of generality, assume that this solution assigns
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the values xi = di, where di = 0 for i > k(f). Then we can define M = ⟨S,X , µ, τ⟩,
where S = {s1, . . . , sk(f)}, τ is the restriction of τ ′ to the set S ⊆ s2, and for every
si ∈ S, µ({si} = di. Obviously M ′ |= f implies M |= f , so it is sufficient to consider
the structures with k(f) worlds.

Now we describe our procedure which runs as follows: it systematically cycles
through sets of characteristic formulas ∆ ⊆ ∆ of cardinality k(f). Fixing such
subsets can be obtained in polynomial space. Indeed, recall that each element of ∆
is a conjunction of elements of SubDL(f) and their negations, and the satisfiability
of each conjunction in MDL can be checked in polynomial space [13]. Then, for
each such ∆, we check if we can assign the probability values x1, . . . , xk(f) to its
elements such that f is satisfied. We consider the formula which is the conjunction
of the following formulas:

x1 + · · · + xk(f) = 1,

x1 ≥ 0, x2 ≥ 0, . . . , xk(f) ≥ 0,

and the formula

TransRCF (f),

where TransRCF (f) is obtained from f by applying the following transformations:

• we replace in f each occurrence of every w(ϕ) (for every ϕ ∈ DS(f)) with
∑

δi∈∆ϕ∩∆

xi.

• We rewrite every integer coefficient from f with an expression that uses only
1, 0, and −1, using the binary representation of the numbers, and the powers
are represented using multiplication. For example, number 9 is rewritten as
(1 + 1)(1 + 1)(1 + 1) + 1.

In this way, the size of obtained conjunction stays polynomial wrt. length of f .
With this transformation, we directly follow the approach of [7]. The idea is that
the obtained formula is a quantifier-free formula in the language of real closed fields
(RCF). Then Canny’s procedure [2], which decides satisfiability of quantifier-free
formulas of RCF in polynomial space, can be applied. It is clear that f is satisfiable
in PMDLMeas iff for some ∆ the formula above is satisfied in RCF. This completes
our proof.
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6 The logic PMDL2

In this section, we present the logic PMDL2 whose language extends the language
of PMDL. This new logic assumes a fixed finite set of agents Ag, and it allows
nesting of probabilities, enabling formulas that can express the uncertainty of one
agent about some other agent’s uncertainty about norms. Consequently, the logic
PMDL2 will have a different probability structure, compared to the previous logic.
Instead of having one measure µ over the states, we will have a function P that
assigns a probability space to each agent and state ranging over a subset of all states.
In the following sections, we will introduce the changes made to PMDL in order to
construct PMDL2.

6.1 Syntax and Semantics
Definition 11 (Formulae). Let P be a set of atomic propositions, and let Ag be a
set of agents. The language LPMDL2 is generated by the following two sentences of
BNF:

[LMDL] ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Oϕ p ∈ P
[LPMDL2 ] θ ::= ϕ | a1wi(θ1) + · · · + anwi(θn) ≥ α | ¬θ | θ ∧ θ aj , α ∈ N, i ∈ Ag

The expression wi(ϕ) ≥ α stands for “according to the agent i, the probability of ϕ
is at least α”.

Note that the formula a1wi(θ1) + · · · + anwi(θn) ≥ α contains exclusively one
agent i; such a formula is called i−probability formula. Although we do not allow
combination of agents within one linear combination, the formulas within the scope
of wi might contain probabilities of other agents than i, as illustrated by the following
example.
Example 2. Following our previous example about behavioral norms in a library,
we can now express the certainty of a person about another person’s certainty. For
example, the fact that a person has become fairly certain that another person is
certain about it not being normal to be quiet in a library. This might be expressed by
the probabilistic statement “agent i attributes the probability that agent j attributes
the probability that one is obliged to be quiet to be at most 0.2 is at least 0.9”. This
sentence could be formalized using the introduced language as

wi(wj(Oq) ≤ 0.2) ≥ 0.9.

For the formulas of PMDL2, we introduce the same types of abbreviations as
we have done for PMDL.

Now we introduce the semantics of PMDL2.
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Definition 12 (Model). A PMDL2 model is a tuple M = ⟨S, τ,P⟩, where:

• S is a non-empty set of states

• τ associates with each state s ∈ S a tuple containing an MDL model and one
of its worlds: τ(s) = (Ds, ws) where:

– Ds = (Ws, Rs, Vs) ∈ D
– ws ∈ Ws

• P(i, s) is a function assigning to each combination of agent (i) and state (s)
a probability space P(i, s) = (Si,s,Xi,s, µi,s) where:

– Si,s ⊆ S an arbitrary subset of S that can be interpreted as the set of
states that agent i has conceptions about in state s.

– Xi,s is a σ-algebra of subsets of Si,s
– µi,s : Xi,s 7→ [0, 1] is a probability measure.

Let us illustrate this definition.

Example 2. (continued) Assume a finite set of atomic propositions {p, q}. Let us
consider the model M = ⟨S, τ,P⟩, where

• S = {s1, s2, s3, s4}

• P We will set the probability measures explicitly for each state-agent pair while
the respective set Si,s will be set to S and the respective sigma-algebra Xi,s will
be the power set of S.

– µi,s1 is characterized by: µi,s1({s1}) = 0.5, µi,s1({s2}) = µi,s1({s3}) =
0.2, µi,s1({s4}) = 0.1

– µj,s1 is characterized by: µj,s1({s1}) = µj,s1({s2}) = 0.1, µj,s1({s3}) =
0.0, µj,s1({s4}) = 0.8.

– µj,s2 is characterized by: µj,s2({s1}) = µj,s2({s2}) = 0.0, µj,s2({s3}) =
0.1, µj,s2({s4}) = 0.9.

– µj,s3 is characterized by: µj,s3({s1}) = µj,s3({s2}) = µj,s3({s3}) = 0.0,
µj,s3({s4}) = 1.

– µj,s4 is characterized by: µj,s4({s1}) = 0.5, µj,s4({s2}) = µj,s4({s3}) =
0.1, µj,s4({s4}) = 0.3.
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• τ maps each state in S to a pointed deontic model; specifically for our interest
is the assignment of state s1, Ds1 = (Ws1 , Rs1 , Vs1) and ws1 such that

– Ws1 = {w1, w2, w3, w4}
– Rs1 = {(w1, w2), (w1, w3), (w2, w2), (w2, w3), (w3, w2), (w3, w3), (w4, w2),

(w4, w3), (w4, w4)}
– Vs1(p) = {w1, w3}, Vs1(q) = {w2, w3}
– ws1 = w1

Note that the domain of τ is always the whole set S; but in this example, we
only explicitly specify τ(s1) for illustration purposes.

This model is depicted in Figure 2. The circle on the right contains the four
states of the model. The dotted lines represent probability measure µi,s1 the others
are not drawn to reduce cluttering. Each of the states is equipped, by τ , with a
standard pointed model of MDL. In this picture, only one of them is shown, the
one that corresponds to s1. It is represented within the circle on the left. Note that
the arrows depict the relation R. If we assume that q stands for “quiet”, like in
the previous example, in all R−successors of w1 the proposition q holds. Note that,
according to Definition 3, this means that in w1 people are obliged to be quiet in the
library.

p
ws1 = w1

qw2

p, q

w3

w4

s2

s1 s3

s4

M

S

τ

Ds1

Ws1

Figure 2: Model M = ⟨S, τ,P⟩.

Next, the satisfiability of a formula in a model can be defined. First, the truth
of a deontic formula in a state of a PMDL2 model is given. This definition is in
accordance with the standard satisfiability relation of MDL |=MDL.

212



Probabilistic Deontic Logic

Definition 13 (Satisfaction). Let M = ⟨S, τ,P⟩ be a PMDL2 model, and let
s ∈ S. We define the satisfiability of formula θ ∈ LPMDL2, in state s of model M
denoted by M, s |= θ recursively as follows with ϕ ∈ LMDL:

• M, s |= ϕ iff Ds, ws |=MDL ϕ, where τ(s) = (Ds, ws).

• M, s |= a1wi(θ1) + · · · + anwi(θn) ≥ α iff
a1µi,s(∥θ1∥Mi,s) + · · · + anµi,s(∥θn∥Mi,s) ≥ α.

• M, s |= ¬θ iff M, s ̸|= θ.

• M, s |= θl ∧ θk iff M, s |= θl and M, s |= θk.

For a model M = ⟨S, τ,P⟩, a formula θ ∈ LPMDL2, state s and agent i, let ∥θ∥Mi,s
denote the set of states that satisfy θ, from the perspective of agent i in state s i.e.,

∥θ∥Mi,s = {s2 ∈ Si,s | M, s2 |= θ}.

We omit the super- and subscripts from ∥θ∥Mi,s when it is clear from context. The
satisfaction relation shows that in this model construction formulas θ can occur as the
argument to a weight formula wi, this means that weight formulas can be arguments
of weight operators.

Since the focus is on measurable structures and completeness is proven for this
class of structures, this class is redefined for PMDL2 models.

Definition 14 (Measurable model). A probabilistic deontic model is measurable if

∥ϕ∥Mi,s ∈ Xi,s

for every ϕ ∈ LMDL.

Example 2. (continued) Continuing the previous example, according to Defini-
tion 13 it holds that M, s1 |= Oq. At this point it is also possible to speak of the
uncertainty of agent i about the uncertainty of agent j of the obligation to be quiet
in the library. Assume that τ is defined in the way such that M, s2 |= Oq and
M, s3 |= Oq, but M, s4 ̸|= Oq. Then µj,s1(∥Oq∥) = µj,s1({s1, s2, s3}) = 0.1 + 0.1 +
0.0 = 0.2; µj,s2(∥Oq∥) = µj,s2({s, s2, s3}) = 0.0 + 0.0 + 0.1 = 0.1; µj,s3(∥Oq∥) =
µj,s3({s, s2, s3}) = 0.0 + 0.0 + 0.0 = 0.0; µj,s4(∥Oq∥) = µj,s4({s1, s2, s3}) = 0.5 +
0.1 + 0.1 = 0.7. From this follows that µi,s1(∥wj(Oq) ≤ 0.2∥) = µi,s1({s1, s2, s3}) =
0.5 + 0.2 + 0.2 = 0.9. According to Definition 6, M, s1 |= wi(wj(Oq) ≤ 0.2) ≥ 0.9.
Describing the uncertainty of agent i about the uncertainty of agent j’s obligation to
be quiet in the library.
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6.2 Axiomatization

The following axiomatization AXPMDL2 combines –like AXPMDL– the axioms of
proof system D of MDL [14] with the axioms of the probabilistic logic. In this case,
the probabilistic axioms come from [6].

The Axiomatic System: AXPMDL2

Tautologies and Modus Ponens

Taut. All instances of propositional tautologies.

MP. From θ and θ → θ′ infer θ′.

Reasoning with O:

O-. . . see axiomatization in Section 3

Reasoning about linear inequalities:

I1.-I7. see axiomatization in Section 3

Reasoning about probabilities:

W1. wi(θ) ≥ 0 (non negativity).

W2. wi(θ∨θ′) = wi(θ)+wi(θ′), if ¬(θ′∧θ′) is an instance of a classical propositional
tautology (finite additivity).

W3. wi(⊤) = 1

P-Dis. From θ ↔ θ′ infer wi(θ) = wi(θ′) (probabilistic distributivity)

As before the axiom Taut allows all propositional tautologies. Though since
LMDL is included in LPMDL2 the distinction for Modus Ponens (MP) dissolves and
can be applied to both types of formulas. P-Dis is an inference rule which states
that two equivalent deontic formulas must have the same probability values.
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6.3 Soundness and Completeness
In this section it is proven that the construction PMDL2 is sound and complete with
respect to the class of measurable models, combining and adapting the approaches
from [14, 6].
Theorem 4 (Soundness & Completeness). The axiom system AXPMDL2 is sound
and complete with respect to the class of measurable probabilistic deontic models.
i.e., ⊢ θ iff |= θ.
Proof. The proof is a modification of the corresponding proof for PMDL. To prove
completeness, we need to show that every consistent formula θ is satisfiable in a
measurable model. The modification of the logic gives iterations of weight formulas
of arbitrary depth, also instead of one measure there is a measure for each agent
and state pair (i, s); for this, the proof needs to be adjusted.

For any formula θ we will denote the set of sub-formulas closed under negation
as follows Sub+(θ) = Sub(θ) ∪ {¬θ′ | θ′ ∈ Sub(θ)}. We say that a set of formulas
A ⊆ B is maximal with regards to B when ∀θ ∈ B, A contains either θ or ¬θ.

Let θ be a consistent formula of LPMDL2 . Then let S denote the set of maximal
consistent subsets of Sub+(θ). And define for each s ∈ S the element ξs = ∧

θ′∈s θ
′

to be the conjunction of elements in s. Denote the set of elements ξs as follows
Ξ = {ξs | s ∈ S}. S will be the set of states of our model of the formula θ.
Furthermore, in order to define τ we construct for each state s ∈ S the MDL context
as sMDL = {ϕ ∈ LMDL | ϕ ∈ s} and its conjunction as δs = ∧

ϕ∈sMDL
ϕ. Then we

can define τ in the following way. By completeness of MDL, for each δs there is a
deontic model Ds and a world ws in it such that Ds, ws |=MDL δs. Then we define
τ(s) = (Ds, ws).

Since our probabilistic deontic model is of the form M = (S, τ,P) this leaves
the task of defining the probability assignment P. We chose Si,s = S and always
assume that every subset of S is measurable. The rest of the proof is essentially the
same as the corresponding proof for defining probability assignment for probabilistic
epistemic logic from [6]. P has to be defined in such a way that when we consider
the model M , then for every s ∈ S and every formula ψ ∈ Sub+(θ) we have M, s |= ψ
iff ψ ∈ s. To do this we will make use of additivity using the following equivalence:

⊢ ψ ↔
∨

{s∈S|ψ∈s}
ξs.

Then using the axiom system, for every i ∈ Ag we can derive in a similar way as in
proof of Theorem 1 the following equation:

⊢ wi(ψ) =
∑

{s∈S|ψ∈s}
wi(ξs).
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By I1-I7, this can be extended to show that any i−probability formula θ′ ∈ Sub+(θ)
can be equivalently rewritten as a formula of the form ∑

s2∈S cs2µi,s(s2) ≥ α.
Similarly as in the proof of Theorem 1 we encode the problem to a set of linear

equations and inequalities over variables of the form xiss2 , where xiss2 represents
µi,s({s2}). For each i−probability formula ψ ∈ Sub+(θ) we have a corresponding
inequality. Using the conclusion et the end of the previous paragraph, When ψ ∈ s
then the corresponding inequality is: ∑

s2∈Si,s
cs2xiss2 ≥ α. When ¬ψ ∈ s, then

we have ∑
s2∈Si,s

cs2xiss2 < α. We also add the non-negativity constraints, and
the condition that ∑

s2∈Si,s
xiss2 = 1, as in the proof of Theorem 1. Furthermore,

following that proof and [7], one can show that this system of inequalities has a
solution x∗

iss2 for all s2 ∈ Si,s; since each ξs is consistent. The solution of this large
system determines probability values of each agent in each state.

What is left to show is that for every formula ψ ∈ Sub+(θ) and every state in S,
we have M, s |= ψ iff ψ ∈ s. The proof proceeds by induction on ψ. If ψ is a deontic
formula the result is immediate from the definition of τ . The cases where ψ is a
negation or conjunction are straightforward. The case where ψ is an i-probability
formula follows from the construction above. Therefore if the formula θ is consistent
then it is satisfiable in a model.

6.4 Decidability
Finally, we show that the logic PMDL2 is decidable.

Theorem 5. Satisfiability problem for PMDL2 is decidable.

Proof. Similarly, as in the proof of Theorem 2, we combine the method of filtration
and reduction to finite systems of inequalities. Because of the similarity, we omit
some details. In the proof, we will use some notation already introduced in the paper.
Let us assume that the formula θ has a model M = ⟨S, τ,P⟩, where P(i, s) =
(Si,s,Xi,s, µi,s). We will use filtration to construct the model of θ with finitely many
states. By ∼ we denote the equivalence relation over S × S, where s ∼ s2 iff for
every θ′ ∈ Sub(θ), s |= θ′ iff s2 |= θ′. Then the quotient set S/∼ is of the size
|S/∼| ≤ 2|Sub(θ)|. As before, for every class Cj we choose an element and denote it
sj . We consider the model M∗ = ⟨S∗, τ∗,P∗⟩, in which:

• S∗ = {sj | Cj ∈ S/∼},

• P∗(i, sj) = (S∗
i,sj
,X ∗

i,sj
, µ∗

i,sj
) such that:

– S∗(i, sj) = {sk ∈ S∗ | (∃s2 ∈ Csk
)s2 ∈ S(sj)},

– X ∗
i,sj

is the power set of S∗(i, sj),
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– µ∗
i,sj

({sk}) = µi,sj (Cwk
) (and µ∗

i,sj
extends to X ∗

i,sj
by additivity),

• τ∗(sj) = τ(sj).

It can be shown that M∗ is a measurable model. Moreover, using straightforward
induction on the complexity of the formula, one can show that for any θ′ ∈ Sub(θ),
M, s |= θ′ iff M∗, si |= θ′ where si represents Cs in M∗. Additionally in the same
way, as in the proof of Theorem 2, we can show that the number of worlds in a
deontic model of each state is finite and at most exponential wrt. size of Sub(θ).
As the number of propositional letters and agents from θ is also finite, it turns out
that we have to check only finitely many options for the choice of S and τ .

Let us describe the procedure which checks the satisfiability of a formula θ.
First, we transform θ to a disjunction of the formulas of the form ∧|Sub(θ)|

k=1 ψk, where
ψk ∈ Sub+(θ) and each subformula of θ appears exactly once in each conjunction
(either negated or not). The conjunctions whose sub-conjunction consisting of de-
ontic formulas is unsatisfiable can be eliminated using the decidability of MDL, as
we have done in the proof of decidability of PMDL. In each state s ∈ S∗ exactly
one formula of the form ∧|Sub(θ)|

k=1 ψk holds. Denote that (characteristic) formula by
δs as before. Here we slightly abuse the notation, and we write ψ ∈ δs if ψ is a
conjunct in δs. For every ℓ ≤ 2Sub(θ) we will consider ℓ formulas of the above form
such that the following three conditions hold:

• Those formulas δs are not necessarily different, but each formula does not
contain both ψ and ¬ψ in the top conjunction.

• The conjunction of all deontic formulas from the top conjunction is consistent.

• At least one δs must contain θ in the top conjunction.

Then for every agent i, every state sj , j < ℓ, we consider the following set of
equations and inequalities, with the set of variables xiss2 , where xiss2 represents
µi,s({s2}) (as in the proof of completeness).

∑

s2

xiss2 = 1,

xiss2 ≥ 0,

a1
∑

sk:θ1∈δsk

xisjsk
+ · · · + an

∑

sk:θn∈δsk

xisjsk
≥ α,
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whenever (a1wi(θ1) + · · · + anwi(θn) ≥ α) ∈ δsj ,

a1
∑

sk:θ1∈δsk

xisjsk
+ · · · + an

∑

sk:θn∈δsk

xisjsk
< α,

whenever ¬(a1wi(θ1) + · · · + anwi(θn) ≥ α) ∈ δsj ,
Thus we have translated the problem of satisfiability of θ to a decidable problem

of solving systems of linear inequalities, as before. Since we have finitely many
possibilities for the choice of ℓ, and for each ℓ finitely many possibilities to choose ℓ
characteristic formulas, our logic PMDL2 is decidable.

7 Conclusion

In this article, we introduced two probabilistic deontic logics. Each of them extends
both monadic deontic logic and probability logic from [7]. The language of the first
logic, PMDL is designed for reasoning about the probability of deontic statements.
We axiomatized that language and proved soundness and completeness with respect
to corresponding semantics. We also proved that our logic is decidable in PSPACE.
The second proposed language allows nested probability operators, and it allows to
express the uncertainty of one agent about the uncertainty that another agent places
on deontic statements.

To the best of our knowledge, we are the first to propose logical frameworks of
probabilistic deontic logics for reasoning with uncertainty about norms. It is worth
mentioning that there is a recent knowledge representation framework about proba-
bilistic uncertainty in deontic reasoning obtained by merging deontic argumentation
and probabilistic argumentation frameworks [15].

Our logic PMDL used MDL as the underlying framework, we used this logic
simply because it is one of the most studied deontic logics. On the other hand, MDL
is also criticized because of some issues [9], like the representation of contrary-to-
duty obligations. It is important to point out that the axiomatization technique
developed in this work can also be applied if we replace MDL with, for example,
dyadic deontic logic, simply by changing the set of deontic axioms and the function τ
in the definition of the model, which would lead to a more expressive framework for
reasoning about uncertain norms. Another avenue for future research is to extend
the language by allowing conditional probabilities. In such a logic, it would be
possible to express that one uncertain norm becomes more certain if another norm
is accepted or learned.
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Abstract

Activation-based conditional inference (ActInf) combines conditional rea-
soning and ACT-R, a cognitive architecture developed to formalize human rea-
soning, and therewith provides a powerful inference formalism which makes
it possible to integrate several aspects of human reasoning, such as focusing,
forgetting, and remembering, into formal uncertain reasoning. The basic idea
of activation-based conditional inference is to determine a reasonable, cogni-
tively adequate subset of a conditional belief base before drawing inductive
inferences. Central to activation-based conditional inference is the activation
function which assigns to the conditionals in the belief base a degree of acti-
vation mainly based on the conditional’s relevance for the current query and
its usage history. Here, we develop a blueprint for activation-based conditional
inference and illustrate how focusing, forgetting, and remembering are included
within our framework.

1 Introduction
Knowledge-based systems, also called expert systems [9, 18], are computer programs
which help to infer information from expert knowledge in order to solve complex
reasoning tasks from the especially nowadays fast growing amount of knowledge.
Typically, knowledge-based systems consist of two components, a domain-specific
belief base and an inference engine. When a user inserts a query, the belief base and
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the query are transferred to the inference engine which decides whether the query can
be answered from the belief base or not. To make a meaningful decision, a sophisti-
cated inference methodology has to be implemented in the inference engine. Taken
as a whole, the aspiration of expert systems is to draw inferences of high quality
from usually incomplete and uncertain beliefs. The contribution of activation-based
conditional inference (ActInf) presented in this paper to this inference process is a
preselection of relevant beliefs from the belief base before this so-reduced belief base
is transferred to the inference engine with the objective to both (a) reduce compu-
tational costs during the inference process and (b) model human cognitive processes
within expert systems more adequately.

It is obvious and reasonable that human reasoners do not draw inferences based
on all of their beliefs, in particular when they have to make their decisions in due
time. Basically, there are two cognitive processes which affect the selection of beliefs:
The long-term process of forgetting and remembering and the short-term process of
activating specific beliefs depending on the context. In ACT-R (Adaptive Control
of Thought-Rational, [5, 4]), a well-founded cognitive architecture established in
cognitive science with the aim to formalize human reasoning, the long-term memory
is represented by the base-level activation, while the context-dependent activation
of beliefs is described by the spreading activation theory [3]. The core idea behind
the spreading activation theory is that an initial priming caused by sensory stimuli
triggers certain cognitive units [3] which again trigger related cognitive units and so
on until the disposition for activation is too low to trigger further cognitive units.
The triggered cognitive units settle the current focus in which reasoning takes place.
However, while ACT-R provides in general a very interesting and intuitive cognitive
environment for reasoning processes, it is severely limited from the perspective of
knowledge representation because it is based crucially on using production rules as
reasoning engine.

In this paper, we reinterpret the basic elements of ACT-R in a more abstract
form, detaching them from its inference engine using production rules. In this way,
we make ACT-R more broadly usable for knowledge representation. Then we com-
bine these abstract ACT-R elements with state-of-the-art conditional reasoning op-
erators, presenting activation-based conditional inference as a novel approach to
reasoning that explicitly takes cognitive aspects into account. Activation-based con-
ditional inference adapts the concept of (de)activation of knowledge entities from
ACT-R and combines it with conditional inference formalisms from nonmonotonic
reasoning. Here, we define a model for activation-based conditional inference by ap-
plying the activation function from ACT-R, constituting of the base-level activation
and the spreading activation, to conditional statements of the form (B|A) with the
meaning “if A holds, then usually B holds, too.” In this way, on the one hand, we
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generalize the concept of focused inference from [23] which involves a selection of
conditionals from a belief base based on their syntactical linkage and give it a pro-
found cognitive meaning. On the other hand, we equip ACT-R, which is typically
realized as a production system [12, 16], with a modern inference formalism of high
quality.

The activation of conditionals and the drawing of inferences from the reduced be-
lief base are two separate processes. The modular structure of activation-based con-
ditional inference allows the user to exchange both the actual configuration of the ac-
tivation function and the inference formalism independently. For the activation func-
tion we give a blueprint which is motivated by the cognitive theory behind ACT-R
and which behaves well in all of our examined examples. As possible inference for-
malisms, we consider System P [1, 13], System Z [17], and c-representations [10],
each of them showing characteristic properties which are beneficial in the context
of activation-based conditional inference (in particular, Semi-Monotony, Maximal
Normality, and, Syntax Splitting, respectively). In [22], we have applied activation-
based conditional inference to probabilistic conditionals (B|A)[x], meaning that “if
A holds, then B follows with probability x,” which shows that our approach also
works in the quantitative setting.

This paper is a revised and largely extended version of [21] and is organized
as follows. First, we recall some basics on conditional logics, inductive inference
formalisms, and focused inference. Then, we briefly discuss the ACT-R architec-
ture while highlighting the activation function as the basis of the selection strategy
for retrieving knowledge entities in ACT-R. Afterwards, we give an outline of our
activation-based conditional inference approach and examine the developed activa-
tion function for conditionals in detail. Finally, we show how the concepts of for-
getting and remembering can be integrated into our framework before we conclude
with a summary and an outlook.

2 Logical Foundations

In this section we recall the logical foundations of qualitative conditional reasoning.
We introduce a propositional logic L(Σ) as a background theory for conditionals,
extend this logic to the logic of conditionals CL(Σ), and discuss some prominent
inductive inference formalisms which can be used to draw inferences from (finite) sets
of conditionals ∆ ⊆ CL(Σ). Finally, we recall the idea of focused inference from [23]
which constitutes the connecting factor for our investigations on activation-based
conditional inference.
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2.1 Propositional Logic
We consider a propositional language L(Σ) defined over a finite set of propositional
variables Σ. Elements in Σ are denoted by lowercase letters (a, b, c, . . .) and are
called atoms for short. Formulas in L(Σ) (also called propositions and denoted by
uppercase letters A, B, C . . .) are either atoms from Σ or compounded formulas built
by the common connectives ¬ (negation), ∧ (conjunction), and ∨ (disjunction). A
literal is either an atom or its negation.

The semantics of formulas in L(Σ) is given by interpretations I : Σ → {0, 1}
which assign atoms a ∈ Σ a truth value, either I(a) = 1 (a is true in the interpre-
tation I) or I(a) = 0 (a is false in I). Interpretations are recursively extended to
compounded formulas by I(¬A) = 1 iff I(A) = 0, I(A ∧ B) = 1 iff I(A) = 1 and
I(B) = 1, as well as I(A∨B) = 1 iff I(A) = 1 or I(B) = 1, as usual in propositional
logics. The set of all interpretations over Σ is denoted by I(Σ). An interpretation
I ∈ I(Σ) is a model of a formula A iff I(A) = 1. A formula A from L(Σ) entails
another formula B from L(Σ), written A |= B, iff every model I ∈ I(Σ) of A is also
a model of B, i.e., iff I(A) = 1 implies I(B) = 1. Iff A entails B and B entails A,
then A and B are logically equivalent, A ≡ B in symbols.

In order to shorten expressions, we use the abbreviations AB = A ∧ B (juxta-
position), A = ¬A (overline), A ⇒ B = A ∨ B (material implication), ⊤ = A ∨ A
(tautology), and ⊥ = AA (contradiction). In order to refer to the set of atoms which
are mentioned in a formula A, we write Σ(A). That is, Σ(A) is the signature of A.

2.2 Conditionals and Ranking Semantics
To be able to formalize uncertain beliefs of a reasoner, we extend the propositional
language L(Σ) by the use of the conditional operator | and obtain the language of
defeasible (propositional) conditionals

CL(Σ) = {(B|A) | A, B ∈ L(Σ)}.

Conditionals (B|A) ∈ CL(Σ) have the intuitive meaning “if A holds, then usually B
holds, too,” which means that B is a plausible consequence of A but there might
be exceptional cases in which the conclusion from A to B fails. Plausible facts are
subsumed within CL(Σ) by conditionals (A|⊤) stating that A is assumed to hold
without any precondition. Finite sets of conditionals serve as belief bases.

The formal semantics of conditionals is based on ranking functions over possible
worlds. The possible worlds considered here are simply the interpretations in I(Σ)
represented as complete conjunctions of literals. That is, the possible world which
refers to the interpretation I ∈ I(Σ) mentions the atoms a ∈ Σ that are true in I
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(i.e., I(a) = 1) positively, and the atoms a ∈ Σ that are false in I (i.e., I(a) = 0)
occur in the possible world in negated form (¬a). The set of all possible worlds
over Σ is denoted by Ω(Σ).

By following [20], ranking functions κ : Ω(Σ) → N∞
0 map possible worlds to

a degree of implausibility while satisfying the normalization condition κ−1(0) ̸= ∅.
The higher the rank of a possible world, the less plausible the possible world is.
Hence, κ−1(0) is the set of the most plausible worlds. Ranking functions are extended
to rate formulas and conditionals in the following way. The rank κ(A) of a formula A
is the minimal rank of its models,

κ(A) = min{κ(ω) | ω ∈ Ω(Σ), ω |= A},

where the convention min ∅ = ∞ applies. The rank of a conditional (B|A) is
κ(B|A) = κ(AB) − κ(A). A ranking function κ accepts a conditional (B|A), written
as κ |= (B|A), iff κ(AB) < κ(AB) or κ(A) = ∞. Eventually, κ is a (ranking) model
of a belief base ∆ iff κ accepts all conditionals in ∆.

A belief base is called consistent iff it has at least one model. Consistency of a
belief base can be checked based on the notion of tolerance [17]. A belief base ∆
tolerates a conditional (B|A) iff there is a possible world ω ∈ Ω(Σ) such that ω
verifies (B|A), i.e., ω |= AB, and no conditional from ∆ is falsified by ω, i.e.,
ω |= (A′ ⇒ B′) for all (B′|A′) ∈ ∆. With this, the consistency check of ∆ goes as
follows (cf. [8]): Remove all conditionals from ∆ which are tolerated by ∆. Then,
repeat with the reduced belief base. If this procedure ends up in the empty belief
base ∅, then ∆ is consistent. Otherwise, ∆ is inconsistent.

The set of all consistent belief bases over Σ is denoted by D(Σ). As for formulas,
we denote the set of atoms which are mentioned in X with Σ(X), whether X is a
single conditional or a whole belief base.

Example 1. In Table 1 an example of a belief base about an animal world is shown.
The signature of this belief base ∆a is Σ(∆a) = {a, b, c, d, f, h, i, k, l, m, p, r, s, w} and
the signature of conditional r6 is Σ(r6) = {b, p}, for example. The proof that ∆a is
consistent is straightforward (please see also Table 3 and Example 5).

2.3 Inductive Inference
We consider the task of drawing inductive inferences from a consistent belief base ∆.
Roughly said, we understand inductive inferences as conditionals q = (B|A) ∈ CL(Σ)
which are plausible consequences from ∆. In other words, if one accepts ∆, then
one should presumably accept q either. In order to formally define what a plausible
consequence from ∆ is, we consider (inductive) inference operators as in [11].
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Conditional Meaning
r1 = (f |aw) Winged (w) animals (a) usually fly (f).
r2 = (f |aw) Wingless animals usually do not fly.
r3 = (b ⇒ a|⊤) Birds (b) are animals.
r4 = (w|b) Birds usually have wings.
r5 = (d|b) Birds usually drink (d) water.
r6 = (p ⇒ b|⊤) Penguins (p) are birds.
r7 = (f |p) Penguins usually do not fly.
r8 = (c ⇒ b|⊤) Chicken (c) are birds.
r9 = (f |c) Chicken usually do not fly.
r10 = (f |cs) Scared (s) chicken usually fly.
r11 = (s|c) Chicken are usually not scared.
r12 = (i ⇒ a|⊤) Fish (i) are animals.
r13 = (r ⇒ i|⊤) Freshwater fish (r) are fish.
r14 = (l ⇒ i|⊤) Saltwater fish (l) are fish.
r15 = (l ∨ r|i) Fish are usually saltwater fish or freshwater fish.
r16 = (d|r) Freshwater fish usually do not drink water.
r17 = (d|l) Saltwater fish usually drink water.
r18 = (h ⇒ r|⊤) Hatchetfish (h) are freshwater fish.
r19 = (fw|h) Hatchetfish usually fly but are wingless.
r20 = (k ⇒ m|⊤) Kangaroos (k) are marsupials (m).

Table 1: Belief base ∆a = {r1, . . . , r20} from Example 1.

Definition 1 ((Inductive) Inference Operator). Let Σ be a signature. An (induc-
tive) inference operator I : D(Σ) → 2L(Σ)×L(Σ) is a mapping which assigns to each
consistent belief base ∆ ∈ D(Σ) an inference relation |∼I

∆ ⊆ L(Σ)×L(Σ) such that:

• If (B|A) ∈ ∆, then A |∼I
∆ B. (Direct Inference)

• If ∆ = ∅, then A |∼I
∆ B only if A |= B. (Trivial Vacuity)

With a slight abuse of notation, we denote with I(∆) = {(B|A) ∈ CL(Σ) | A |∼I
∆ B}

the set of all inductive inferences which can be drawn from ∆ with respect to I.

The term inductive is used because inductive inference operators are able to
generate new inferences from a set of given conditional beliefs ∆. In our case,
they are even capable of completing belief bases to whole belief states, i.e., ranking
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functions. Note that the inference relations |∼I
∆ are parametrized by ∆ in the sense

that they use ∆ as a base for an inductive generation process while respecting Direct
Inference and Trivial Vacuity. Inductive inference leads to a three-valued inference
response to a query conditional (B|A) ∈ CL(Σ), going back to de Finetti [6]:

[[(B|A)]]I∆ =





yes iff (B|A) ∈ I(∆)
no iff (B|A) ∈ I(∆)
unknown otherwise

.

We now discuss some important representatives of inference operators.

System P

The System P inference operator IP [1, 13] is defined by (B|A) ∈ IP (∆) iff every
model of ∆ accepts the conditional (B|A) ∈ CL(Σ). It is a semantical characteriza-
tion of a collection of well-established inference rules from nonmonotonic reasoning
[1, 13] which are recalled in the next definition.

Definition 2 (System P). Let |∼ ⊆ L(Σ) × L(Σ) be an inference relation, and
let A, B, C ∈ L(Σ) be formulas. Then, System P is the collection of the following
inference rules:

A |∼ A, (Reflexivity)
AB |∼ C and A |∼ B imply A |∼ C, (Cut)

A |∼ B and A |∼ C imply AB |∼ C, (Cautious Monotony)
A |∼ B and B |= C imply A |∼ C, (Right Weakening)
A |∼ C and B |∼ C imply A ∨ B |∼ C, (Or)
A ≡ B and B |∼ C imply A |∼ C. (Left Logical Equivalence)

Whether (B|A) ∈ IP (∆) holds or not can be decided based on a consistency
check. One has (B|A) ∈ IP (∆) iff ∆ ∪ {(B|A)} is inconsistent [8].

Example 2. From ∆a (cf. Table 1) we can infer that winged birds usually drink
water, i.e., (d|bw) ∈ IP (∆a), because ∆a ∪ {(d|bw)} is inconsistent. An alternative
way to prove this inference is to apply the inference rules from System P directly.
Since |∼IP

∆a is an inductive inference operator, it satisfies Direct Inference and we
have b |∼IP

∆a w as well as b |∼IP

∆a d. Consequently, with Cautious Monotony we can
infer bw |∼IP

∆a d.
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A meaningful property of inductive inference operators in the context of activa-
tion-based conditional inference is Semi-Monotony. An inductive inference opera-
tor I is called semi-monotonous iff for every two consistent belief bases ∆ and ∆̃
it holds that ∆̃ ⊆ ∆ implies I(∆̃) ⊆ I(∆). Note that for Semi-Monotony, the idea
of induction is crucial because Semi-Monotony means monotony with respect to the
parameter ∆, while normal monotony focuses on the premises A of inferences A |∼ B.
A proof that the System P inference operator IP is semi-monotonous is given in [23],
but this is also obvious from the syntactic characterization via the inference rules
in Definition 2. Here, we give an example which illustrates the Semi-Monotony of
System P.

Example 3. Consider ∆a′ = {r9, r11} ⊆ ∆a (cf. Table 1). Since ∆a′ ∪ {(f |cs)}
is inconsistent, cs |∼P

∆a′ f follows. That is, one can infer from ∆a′ with respect
to System P that chicken which are not scared usually do not fly. Due to the
Semi-Monotony of System P, this inference can also be drawn from ∆a because of
∆a′ ⊆ ∆a.

System Z

Another well-known inference operator is provided by System Z [17]. The System Z
inference operator IZ makes use of the so-called Z-partition of a consistent belief
base ∆ as an auxiliary structure for computing IZ(∆). Z-partitions are specific
ordered partitions of belief bases. An ordered partition (∆0, ∆1, . . . , ∆m) of ∆ is
called tolerance partition of ∆ iff, for i = 0, . . . , m, every conditional in ∆i is tolerated
by ⋃m

j=i ∆j . The Z-partition Z(∆) is the unique tolerance partition of ∆ which is
obtained by iteratively determining ∆i as the ¸maximal set of tolerated conditionals.
If a conditional r is in the i-th partition of Z(∆), we say that r has Z-rank Z∆(r) = i.
Therewith, a conditional (B|A) ∈ CL(Σ) is inferred from a consistent belief base ∆
with respect to System Z, written (B|A) ∈ IZ(∆), iff the ranking model κZ

∆ of ∆
which is defined by

κZ
∆(ω) =

{
0, iff ∀(B′|A′) ∈ ∆ : ω |= A′ ⇒ B′

max{Z∆(r) | r = (B′|A′) ∈ ∆ : ω |= A′B′} + 1, otherwise

accepts (B|A).
Drawing inferences in System Z corresponds precisely to the entailment by ra-

tional closure [15, 7]. While IZ is not semi-monotonous, it satisfies the property
Rational Monotonicity in contrast to the System P inference operator IP . Let
A, B, C ∈ L(Σ), then an inference relation |∼ ⊆ L(Σ) × L(Σ) satisfies Rational
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Cond. Z∆a(ri) Cond. Z∆a(ri) Cond. Z∆a(ri) Cond. Z∆a(ri)
r1 0 r6 0 r11 1 r16 0
r2 0 r7 1 r12 0 r17 0
r3 0 r8 0 r13 0 r18 0
r4 0 r9 1 r14 0 r19 1
r5 0 r10 2 r15 0 r20 0

Table 2: Z-ranks Z∆a(r) of the conditionals in the belief base ∆a (cf. Table 1).

Monotonicity iff

A |∼ B and not A |∼ C imply AC |∼ B. (Rational Monotonicity)

In the following example, we apply System Z inference to the belief base ∆a from
Example 1. All these System Z inferences as well as the ordered partition of ∆a

employed by System Z can easily be computed using the online system InfOCF-
Web [14] which also provides implementations of inferences according to System P
as well as implementations of other nonmonotonic inference operators.

Example 4. We again consider the belief base ∆a from Table 1. The Z-ranks of
the conditionals in ∆a are shown in Table 2. For example, the Z-rank of r1 is
Z∆a(r1) = 0 because r1 is tolerated by ∆a (consider ω = abcdfhiklmprsw). Accord-
ing to System Z, we have p |∼IZ

∆a f because (f |p) ∈ ∆a and, as being an inductive
inference operator, IZ satisfies Direct Inference. Together with the fact that it cannot
be inferred from ∆a that penguins usually do not have wings, i.e., p |̸∼IZ

∆a w, Rational
Monotonicity tells us that winged penguins usually do not fly, in symbols pw |∼IZ

∆a f
resp. (f |pw) ∈ IZ(∆a). Note that this inference cannot be drawn in System P. The
fact that p ̸ |∼IZ

∆a w holds can be shown as follows: Because ω = abcdfhiklmprsw
falsifies only conditional r7 and the Z-rank of r7 is Z∆a(r7) = 0, one has, on the
one hand, κZ

∆a(pw) ≤ 1. On the other hand, one has κZ
∆a(pw) ≥ 1 because every

possible world ω which models pw either falsifies at least r4 (if ω |= b) or at least r6
(if ω |= b). Together, κZ

∆a(pw) ≤ κZ
∆a(pw) follows, which implies p |̸∼IZ

∆a w.

A further property of System Z inference which will be of importance here is
that the Z-partition Z(∆) of the conditionals in ∆ satisfies the paradigm of maxi-
mum normality, i.e., the lower the Z-rank of a conditional is, the more normal the
conditional is.

Example 5. Once again we refer to the belief base ∆a from Table 1 and the Z-
ranks of the conditionals in ∆a according to Table 2. The Z-ranks Z∆a(r10) = 2
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and Z∆a(r9) = 1 illustrate the concept of normality well. While conditional r9
is concerned about the flight ability of chicken in general, conditional r10 makes
a statement about the flight behavior of chicken when they are in a special mood.
Hence, conditional r10 applies to a more specific case than r9 and accordingly has a
higher Z-rank.

c-Representations

We finally want to bring the concept of c-representations [10] into focus. c-Represen-
tations are special ranking functions obtained by assigning individual integer impacts
to the conditionals in ∆. In a second step, the ranks of the possible worlds are
generated as the sum of impacts of falsified conditionals.

Definition 3 (c-Representation). A c-representation κc
∆ of a consistent belief base

∆ = (B1|A1), . . . , (Bn|An) is a ranking function constructed from non-negative in-
teger impacts ηj ∈ N0 assigned to each (Bj |Aj) ∈ ∆ such that κc

∆ accepts ∆ and is
given by

κc
∆(ω) =

∑

j=1,...,n:
ω|=AjBj

ηj .

The c-representations of a consistent belief base ∆ constitute a family of ranking
functions, depending on the concrete specification of the impact values ηj . Any
c-representation κc

∆ of this family allows one to draw inductive inferences from ∆.
In order to obtain an inference operator, one has to fix a single c-representation per
belief base, preferably based on a common methodology. One possible way of doing
so is to consider the so-called Z-c-representations [10] which are c-representations
that make use of the System-Z partition to compute the impact values ηj in a unique
way.

Here, we mention c-representations because drawing inferences based on c-repre-
sentation (c-inference) satisfies Syntax Splitting [11]. The idea behind syntax split-
ting is that if a belief base splits into two syntactically independent parts, then
reasoning about one part of the belief base should be independent of the other part.
Like Semi-Monotony, Syntax Splitting is obviously a property of interest when iden-
tifying subsets of a consistent belief base ∆ from which meaningful inferences or
even the same inferences as from ∆ can be drawn. For the technical details, see [11].

2.4 Focused Inference
Taking up the idea of identifying meaningful subsets of a belief base for drawing
inferences, we now recall the concept of focused inference from [23]. The idea be-
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hind focused inference is to draw inferences from a reasonable (as small as possible)
subset of ∆ in order to make snap but still well-founded decisions in time. In this
context, the advantage of semi-monotonous inference operators like IP is that one
does not risk to draw false inferences when focusing on a subset ∆̃ ⊆ ∆ because
[[(B|A)]]IP

∆̃ = yes (resp. no) implies [[(B|A)]]IP

∆ = yes (resp. no). In order to for-
malize focused inference, we consider mappings ϕ : D(Σ) → D(Σ) with ϕ(∆) ⊆ ∆,
i.e. mappings which return subsets of ∆. We call such a mapping ϕ a focus.

Definition 4 (Focused Inference). Let ∆ be a belief base, (B|A) a conditional, I an
inference operator, and ϕ a focus. Then, (B|A) follows from ∆ wrt. I in the focus ϕ
iff (B|A) ∈ I(ϕ(∆)).

In [23], the focus ϕ is defined iteratively based on the query q = (B|A): The
conditionals in the direct focus ϕq

0 are those conditionals which share at least one
atom with q, i.e. ϕq

0(∆) = {r ∈ ∆ | Σ(r) ∩ Σ(q) ̸= ∅}. The conditionals in the i-th
focus are determined by ϕq

i (∆) = {r ∈ ∆ | ∃r′ ∈ ϕq
i−1(∆) : Σ(r) ∩ Σ(r′) ̸= ∅}. Note

that this definition of the foci respects the concept of Syntax Splitting. That is,
if the belief base ∆ splits into syntactically independent subsets ∆1 and ∆2 with
∆i ⊆ CL(Σi) for i = 1, 2 and Σ1 ∩ Σ2 = ∅, and if q ∈ CL(Σ1), then ϕq

i (∆) ⊆ ∆1 for
all i ∈ N0. Analogously, ϕq

i (∆) ⊆ ∆2 if q ∈ CL(Σ2).

Example 6. The belief base ∆a (cf. Table 1) splits into the syntactically independent
subsets ∆a

1 = {r1, . . . , r19} and ∆a
2 = {r20}. The direct focus of ∆a wrt. q = (f |cs) is

∆0 = ϕq
0(∆a) with ∆0 = {r1, r2, r7, r8, r9, r10, r11, r19}. One can show that [[q]]IP

∆0
= no.

According to Example 3, one already has [[q]]IP

∆a′ = no for ∆a′ = {r9, r11} ⊂ ∆0,
though. Hence, the direct focus according to [23] does not have to be the smallest
possible focus in which an inference can be drawn. On the contrary, a focus can
also be too small in order to decide a query. For instance, [[q]]IP

∆a′′ = unknown with
respect to any ∆a′′ ⊂ ∆a with {r9, r11} ̸⊆ ∆a′′.

To sum up, apart from the computational benefits of drawing inferences with
respect to small foci, appropriate foci are also interesting from the knowledge rep-
resentation and reasoning (KRR) perspective because they may unveil the part of
the belief base which is relevant for answering the query.

3 Cognitive Foundations
We now approach activation-based conditional inference from the cognitive perspec-
tive and discuss the ACT-R architecture. In particular, we focus on the activation
process of chunks.
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3.1 ACT-R Architecture
ACT-R (Adaptive Control of Thought-Rational, [5, 4]) is a production systems based
cognitive architecture with the aim to formalize human reasoning. In ACT-R a
distinction is made between the declarative and the procedural memory. In the
declarative memory, categorical knowledge about individuals or objects is stored in
form of chunks (knowing that) while the procedural memory consists of production
rules and describes how the chunks are processed (knowing how, [19]).

Reasoning in ACT-R starts with an initial priming, for example a stimulus from
the environment, which causes an activation of chunks. The chunk with the highest
activation is processed by a selection of production rules in order to compute a
solution to the reasoning task. If this fails, the activation passes into an iterative
process: The system obtains additional chunks from the declarative memory and
tries to compute a solution again. The iteration stops when either the problem is
solved or no further chunks are active.

The retrieval of chunks is a very refined process in ACT-R. Basically, it depends
on an activation function which is calculated for each specific request anew and
which is based on a usage history of the chunks, associations between cognitive units
and the priming [3]. There is no clear consensus about the kind of cognitive units
despite of the perception that they form the basic building blocks of thinking [2].

3.2 Activation of Chunks
How the activation of a chunk A(ci) is computed in detail depends on multiple
parameters and the configurations of the ACT-R system, but is mainly given by the
sum of the so-called base-level activation B(ci) and the spreading activation S(ci),
which again is a sum of degrees of association between chunks S(ci, cj) weighted by
some weighting factors W(cj):

A(ci) = B(ci)

︸ ︷︷ ︸
base-level activation

+
∑

j

W(cj) · S(ci, cj)
︸ ︷︷ ︸

spreading activation S(ci)

. (1)

The base-level activation of a chunk B(ci) reflects the entrenchment of ci in the
reasoner’s memory and depends on the recency and frequency of its use. Typi-
cally, B(ci) is decreased over time (fading out) and is increased when the chunk is
active. Further, B(ci) is independent of the priming.

In contrast, the spreading activation of a chunk S(ci) depends on the priming
and exploits the well-known spreading activation theory [3] to formalize how the
brain iterates through a network of associated ideas to retrieve information. In
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the spreading activation theory one breaks down the notion of ideas into cognitive
units. Usually, the cognitive units are arranged as vertices in an undirected graph,
the so-called spreading activation network N (∆), and an initial triggering of some
cognitive units caused by the priming is propagated through N (∆). The spreading
activation S(ci) can then be derived from the triggering values of the cognitive units
of which ci makes use. The interrelation of cognitive units and of chunks is specified
in more detail in the degree of association and the weighting factor.

The degree of association S(ci, cj) reflects how strongly related ci and cj are.
Chunks which deal with the same issue have a high degree of association while
chunks which refer to different topics are only loosely or not related and, therefore,
have a low degree of association. Technically, S(ci, cj) is based on the cognitive
units which ci and cj have in common. The degrees of association are weighted by
the weighting factors W(ci). While the degree of association is independent of the
priming, the weighting factors reflect the context-dependency of A(ci). Only if ci is
associated to a chunk cj (S(ci, cj) > 0) which has positive weight (W(cj) > 0), then
the chunk ci has a positive spreading activation (S(ci) > 0), too.

4 Activation-Based Conditional Inference
We now apply the ACT-R machinery to conditional reasoning and develop activa-
tion-based conditional inference. We start with a general integration of the activation
of conditionals into the focused inference pipeline, before we discuss the activation
function for conditionals in detail. We conclude this section by showing how cognitive
concepts such as forgetting and remembering fit into our activation-based conditional
inference approach.

4.1 Integration of the Activation of Conditionals
into Focused Inference

As common ACT-R implementations are production systems which process chunks
that are represented as simple lists of attributes, the logical basis of ACT-R does
not hold the pace with modern KRR formalisms in nonmonotonic reasoning. Thus,
we propose a cognitively inspired model of inductive conditional reasoning by in-
terpreting the concepts of ACT-R in terms of logic, conditionals, and inference.
More precisely, we replace chunks by the conditionals of a belief base ∆ and derive a
focus ϕ based on the activation function in Equation (1) in order to draw focused in-
ferences with respect to any inference operator I(ϕ(∆)). Here, we rely on IP (ϕ(∆))
because of the semi-monotony of System P. In our formalism, atoms play the role
of cognitive units, and the production rules are replaced by the inference operator.
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- Calculate focus ∆θ
A

(based on model parameters and current
base-level activation (optionally))

Activation of Conditionals

- Calculate I(∆θ
A)

(based on inference operator I)

Inference Engine

Input:
- Belief base ∆
- Query q

Output/input:
- Reduced belief base ∆θ

A
- Query q

Output:
- Inference response [[q]]I∆θ

A

Repeat with lower
threshold θ if
[[q]]I∆θ

A
= unknown

Figure 1: Activation-based conditional inference pipeline.

From the conditional logical perspective, the added value of this activation-based
conditional inference approach are

• the cognitive justification of the focus,

• the possibility of a more fine-grained adjustment of the focus than in [23],

• and the option to integrate further cognitive concepts such as forgetting and
remembering.

Formally, we calculate an activation value A(r) > 0 for every conditional r in ∆. If
this activation A(r) is above a certain threshold, say A(r) ≥ θ, the conditional is
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selected for the focus ϕ(∆). For this, we consider a selection function sθ
A : ∆ → {0, 1}

with sθ
A(r) = 1 iff A(r) ≥ θ (and sθ

A(r) = 0 otherwise) and denote the set of selected
conditionals by

∆θ
A = {r ∈ ∆ | sθ

A(r) = 1}.

Possible strategies for choosing suitable thresholds θ are (a) guaranteeing that a
certain percentage of conditionals is selected or (b) maximizing the gap between the
activation value of the least activated selected conditional and the most activated
unselected conditional. Note that ∆θ

A will implicitly depend on a query conditional
q = (B|A) since queries will serve as the initial priming and the spreading activation,
which is part of A, depends on this priming.

Definition 5 (Activation-Based Conditional Inference). Let ∆ be a belief base,
(B|A) a conditional, I an inference operator, A an activation function for ∆, and
let θ ≥ 0. Then, (B|A) is activation-based inferred from ∆ wrt. I, A, and θ iff
(B|A) ∈ I(∆θ

A).

If answering a query fails, i.e. [[(B|A)]]I∆θ
A

= unknown, then the inference process
can be repeated by iteratively choosing a lower threshold θi+1 < θi which leads to
a larger (or equal) set of selected conditionals. In the limit, when choosing θ = 0,
one has ∆θ

A = ∆, thus I∆0
A

= I∆. This iteration process is in analogy to the
sequence (ϕq

i (∆))i∈N0 defined in [23] and can be used to approximate I(∆) for any
inductive inference operator I. In particular, the chance of successfully answering
the query increases with each iteration step when I is semi-monotonous. The whole
inference pipeline is shown in Figure 1.

4.2 Blueprint for Activation-Based Conditional Inference
ACT-R does not formalize the activation function in Equation (1) in detail but
describes its functionality informally. Hence, there is certain freedom in its con-
figuration. We give a concrete instantiation of the activation function within the
conditional inference setting which can be seen as a blueprint for further investiga-
tions and empirical analyses. Note that we shift the dependence of the base-level
activation on the usage history of conditionals to the next section.

Let ∆ be a belief base, ri ∈ ∆, and q a conditional (the query conditional which
serves as the initial priming in this context as well). Then, Equation (1) becomes

A∆
q (ri) = B∆(ri)

︸ ︷︷ ︸
base-level activation

+
∑

rj∈∆
W∆

q (rj) · S(ri, rj)

︸ ︷︷ ︸
spreading activation S∆

q (ri)

.
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We explain the single components of A∆
q (ri) in detail.

Base-Level Activation

The base-level activation B∆(r) reflects the entrenchment of r in the reasoner’s mem-
ory. Since epistemic entrenchment and ranking semantics are dual ratings, the nor-
mality of a conditional is a good estimator and we define

B∆(r) = 1
1 + Z∆(r) , r ∈ ∆,

where Z∆(r) is the Z-rank of r. Following this definition, B∆(r) is positive and
normalized by 1. While the most normal conditionals have a base-level activation
of B∆(r) = 1, this value decreases with increasing specificity of r.

Example 7. Table 3 shows the base-level activations of the conditionals in ∆a (Ta-
ble 1). For example, B∆a(r9) = 1/2 and B∆a(r10) = 1/3. Since r9 is less specific
than r10 (cf. Example 5), its base-level activation is higher than B∆a(r10).

When taking no account of the spreading activation S∆
q (r) and considering the

base-level activation B∆(r) only, then the selection function sθ
A selects the condition-

als from the first j sets of the System Z-partition Z(∆) = (∆0, ∆1, . . . , ∆m), where j
depends on the threshold θ. For example, when θ = 1, the conditionals from ∆0 are
selected, i.e. ∆1

A = ∆0, and when θ = 0.5, then ∆0.5
A = ∆0 ∪ ∆1. Note that this

closeness to System Z does not necessarily mean that activation-based conditional
inferences are similar to System Z inferences. The base-level activation only affects
which conditionals are selected for reasoning, the actual inferences also depend on
the inference operator that is applied thereafter.

Weighting Factor

The weighting factor W∆
q (r) indicates how much the initial priming q triggers the

conditional r. We formalize the influence of the priming according to the spreading
activation theory by a labeling of the so-called spreading activation network N (∆)
between cognitive units. In our context, the cognitive units are simply the atoms in
Σ and the outcome of N (∆) is a triggering value τ∆

q (a) ∈ [0, 1] which indicates how
much a is triggered by q.

We now discuss how the labeling of the spreading activation network works in
detail. The spreading activation network N (∆) = (V, E) is an undirected graph
with vertices V = Σ. Edges in E represent associations between the atoms in Σ
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Cond. Z∆a(ri) B∆a(ri) W∆a

q1 (ri) S∆a

q1 (ri) A∆a

q1 (ri) W∆a

q2 (ri) S∆a

q2 (ri) A∆a

q2 (ri)

r1 0 1 1/3 1.36 2.36 1/4 1.27 2.27
r2 0 1 1/3 1.36 2.36 1/4 1.27 2.27
r3 0 1 2/3 1.41 2.41 1/4 0.66 1.66
r4 0 1 1/3 1.13 2.13 1/4 0.70 1.70
r5 0 1 2/15 0.82 1.82 1/21 0.41 1.41

r6 0 1 2/3 1.36 2.36 1/4 0.60 1.60
r7 1 1/2 2/3 1.23 1.73 1/4 1.10 1.60
r8 0 1 4/15 1.03 2.03 1/4 1.43 2.43
r9 1 1/2 4/15 0.93 1.43 1 2.35 2.85
r10 2 1/3 2/15 0.81 1.14 1 2.61 2.94

r11 1 1/2 2/15 0.40 0.90 1 2.08 2.58
r12 0 1 1/3 0.78 1.78 1/21 0.29 1.29
r13 0 1 1/15 0.29 1.29 1/21 0.12 1.12
r14 0 1 1/15 0.27 1.27 4/151 0.08 1.08
r15 0 1 1/15 0.29 1.29 4/151 0.12 1.12
r16 0 1 1/15 0.19 1.19 1/21 0.11 1.11
r17 0 1 1/15 0.17 1.17 4/151 0.07 1.07
r18 0 1 1/15 0.18 1.18 1/21 0.15 1.15
r19 1 1/2 1/5 0.89 1.39 1/4 1.09 1.59
r20 0 1 0 0 1 0 0 1

Table 3: Z-ranks Z∆a , base-level activation B∆a , weighting factors W∆a

qi
, spreading

activation S∆a

qi
, and activation function A∆a

qi
wrt. q1 = (p ⇒ a|⊤) and q2 = (f |cs) for

the conditionals in ∆a. For selected conditionals, the respective degrees of activation
are boxed (threshold θ = 2.3).

along which the triggering of the atoms spreads. Two atoms are associated if they
occur commonly in some conditionals in ∆, i.e.

E = {{a, b} | ∃r ∈ ∆ : {a, b} ⊆ Σ(r)}.

The actual spreading of activation is modeled by iteratively labeling the vertices
(atoms) in N (∆) with their triggering value τ∆

q (a). The labeling algorithm is shown
in Figure 3. It starts with labeling the atoms which are mentioned in the query q
with 1. In the subsequent step, the neighboring atoms are labeled and so on. The
remaining atoms which are not reachable from the initially labeled atoms in Σ(q)
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a

bp

c

f

d i

r

k

l

m

s

w

h

Atom a τ∆a

q1 (a) τ∆a

q2 (a)
a 1 (0) 1/4 (1)
b 2/3 (1) 1/4 (1)
c 4/15 (2) 1 (0)
d 2/15 (2) 1/21 (2)
f 2/3 (1) 1 (0)
h 1/5 (2) 1/4 (1)
i 1/3 (1) 1/21 (2)
k 0 (∞) 0 (∞)
l 1/15 (2) 4/151 (3)
m 0 (∞) 0 (∞)
p 1 (0) 1/4 (1)
r 1/15 (2) 1/21 (2)
s 2/15 (2) 1 (0)
w 1/3 (1) 1/4 (1)

Figure 2: Unlabeled spreading activation network N (∆a) and labeling of N (∆a)
with respect to the queries q1 = (p ⇒ a|⊤) and q2 = (f |cs). The numbers in the
parentheses next to the labels (i.e., triggering values) are the iteration steps in which
the atoms are labeled. 0 stands for the priming and ∞ for unreachable atoms.

are labeled with 0. The labels of the atoms in between are the sum of the labels
of the already labeled neighbors weighted by the sum of all labels so far plus 1.
This guarantees that these labels are between 0 and 1 and decrease for increasing
iteration steps. Therewith, the triggering value of an atom depends on both the
count and the triggering values of the associated atoms, i.e. the atoms which are
already triggered and which are neighbored in N (∆). The more triggered atoms an
atom a is associated with and the higher the triggering values of these associated
atoms is, the higher becomes the triggering value of a, too.

Example 8. Figure 2 shows on the left-hand side the (unlabeled) spreading activa-
tion network of ∆a (Table 1). The labelings with respect to the queries q1 and q2
are shown on the right-hand side. For example, Σ(q1) = {a, p} and consequently
label(a) = label(p) = 1. Next, b, f , i, and w are labeled as they are direct neighbors
of at least one of the atoms a, p. For instance, {a, w} ∈ E and, therefore,

label(w) = label(a)
1 + label(a) + label(p) = 1/3.
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Labeling Algorithm
Input: Spreading activation network N (∆) = (V, E) (unlabeled);

query q = (B|A)
Output: Labeling of N (∆), i.e., triggering values τ∆

q (a) = label(a) for a ∈ Σ

1 for a ∈ V with a ∈ Σ(q) do
2 label(a) = 1
3 initialize
4 L = {a ∈ V | a is labeled},
5 V ′ = {a ∈ V | ∃{a, b} ∈ E : a ∈ V \ L ∧ b ∈ L}
6 while V ′ ̸= ∅ do
7 for a ∈ V ′ do

8 label(a) =
∑

b∈L: {a,b}∈E label(b)
1 + ∑

b∈L label(b)
9 update L, V ′

10 for a ∈ V \ L do
11 label(a) = 0
12 return label(a) for a ∈ V

Figure 3: Labeling of a spreading activation network N (∆) wrt. a query q.

Atom b is neighbor of a and p and is labeled with

label(b) = label(a) + label(p)
1 + label(a) + label(p) = 2/3.

Eventually, we follow the idea that a conditional r cannot be triggered more than
the atoms mentioned in the conditional and define the weighting factor by

W∆
q (r) = min{τ∆

q (a) | a ∈ Σ(r)}.

Example 9. The weighting factors of the conditionals in ∆a (Table 1) with respect
to the queries q1 and q2 are shown in Table 3. The weighting factors depend on the
labeling of the spreading activation network in Figure 2 which is explained in the
next paragraph. For example, τ∆a

q1 (c) = 4/15 and τ∆a

q1 (f) = 2/3. Consequently, the
weighting factor of r9 with respect to q1 is W∆a

q1 (r9) = min{4/15, 2/3} = 4/15.
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Table 4: Degrees of association S(ri, rj) between the conditionals ri, rj ∈ ∆a. Since
S(ri, rj) is symmetric in its arguments, only the entries in the upper right triangle
of the table are shown. Also 0-entries are left out for a better readability.
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Degree of Association

The degree of association S(ri, rj) is a measure of connectedness between the condi-
tionals in ∆ and is defined by

S(ri, rj) = |Σ(ri) ∩ Σ(rj)|
|Σ(ri) ∪ Σ(rj)| , ri, rj ∈ ∆.

Hence, it is the number of shared atoms relative to all atoms in ri or rj and, therefore,
non-negative and normalized by 1. The degree of association of a conditional r to
itself is S(r, r) = 1 while the degree of association of conditionals which do not share
any atoms is 0. The syntactically-driven definition of S(ri, rj) is motivated by and
extends the idea of Syntax Splitting in the sense that syntactical dependencies are
not understood as a binary relation but are treated as a graduated quantity.

Not only the quantities S(ri, rj) for rj ∈ ∆ themselves are essential for the
spreading activation of a conditional ri but also how many conditionals ri is asso-
ciated with. The more a conditional is cross-linked within ∆, the more likely it is
that this conditional has a high spreading activation and is selected by the selection
function s.

Example 10. The degrees of association between the conditionals in ∆a (Table 1)
are shown in Table 4. For example,

S(r9, r10) = |{c, f} ∩ {c, f, s}|
|{c, f} ∪ {c, f, s}| = |{c, f}|

|{c, f, s}| = 2
3 .

When taking no account of the base-level activation B∆(r) and considering the
spreading activation S∆

q (r) only and when θ > 0 in addition, then the selection func-
tion sθ

A selects conditionals which are syntactically linked to the query q only. This is
because all remaining conditionals r′ have a spreading activation of S∆

q (r′) = 0 < θ.
With increasing syntactically linkage to q also the spreading activation increases.
In this sense, activation-based conditional inference refines Syntax Splitting by a
gradual notion. In addition, when taking the base-level activation into account,
activation-based conditional inference allows one to soften the syntactically moti-
vated rejection of conditionals which are not linked to the query if the entrenchment
of these conditionals is high enough.

Altogether, we are now able to compute A∆
q (r) (without usage history).

Example 11. Table 3 shows A∆a

qi
(cf. also Table 1) wrt. the queries q1 = (p ⇒ a|⊤)

and q2 = (f |cs). If a threshold θ = 2.3 is used, the conditionals which are selected
for activation-based conditional inference are

∆a
1 = (∆a)θ

A1 = {r1, r2, r3, r6},
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where A1 = A∆a

q1 , and

∆a
2 = (∆a)θ

A2 = {r8, r9, r10, r11},

where A2 = A∆a

q2 . One has [[q1]]IP

∆a
1

= yes and [[q2]]IP

∆a
2

= no. That is, both queries
can already be decided based on the reduced belief bases ∆a

1 and ∆a
2 with activation-

based conditional inference. Note that ∆a
1 and ∆a

2 are smaller than the resp. direct
foci according to (standard) focused inference (cf. Example 6 for q2). The thresh-
old θ = 2.3 is such that in both cases 20 % of the conditionals of ∆ are selected for
drawing the inference.

In the next section, we make the base-level activation dependent on the history
of usage of the conditionals and thereby integrate the concepts of forgetting and
remembering into activation-based conditional inference.

4.3 Activation-Based Conditional Inference
and Forgetting and Remembering

In ACT-R the base-level activation of a chunk is not constant but decreases over time
and increases when the chunk is retrieved, reflecting forgetting and remembering.
In order to capture this dynamic view on the base-level activation, we decrease
the base-level activation of a conditional when the conditional is not selected for
answering a query and increase it otherwise. For this, we introduce a forgetting
factor ϕδ,s(r) which is dependent on the selection function s = sθ

A(r) of the current
inference task and a parameter δ ≥ 0, and which is defined by

ϕδ,s(r) =
{

1 + δ iff sθ
A(r) = 1

1 − δ otherwise
.

After performing the inference task, we update the base-level activation with this
forgetting factor and obtain for the updated base-level activation

B∆
δ,s(r) = B∆(r) · ϕδ,s(r).

The higher the parameter δ, the greater the impact of the forgetting factor ϕδ,s(r)
on the base-level activation is. When applying this kind of update to a series of
inference requests, the usage history of the conditionals is implemented into the
base-level activation implicitly.

The next example shows how this update procedure captures the idea of for-
getting. Here, we understand forgetting as the process of lowering the base-level
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Conditional B∆a(ri) A∆a

q2 (ri) A∆a

q1 (ri) B∆a

q1 (ri) A∆a

q1,q2(ri)

r1 1 2.27 2.36 1.20 2.47
r2 1 2.27 2.36 1.20 2.47
r3 1 1.66 2.41 1.20 1.86
r4 1 1.70 2.13 0.80 1.50
r5 1 1.41 1.82 0.80 1.21

r6 1 1.60 2.36 1.20 1.80
r7 1/2 1.60 1.73 0.40 1.50
r8 1 2.43 2.03 0.80 2.23
r9 1/2 2.85 1.43 0.40 2.75
r10 1/3 2.94 1.14 0.27 2.88

r11 1/2 2.58 0.90 0.40 2.48
r12 1 1.29 1.78 0.80 1.09
r13 1 1.12 1.29 0.80 0.92
r14 1 1.08 1.27 0.80 0.88
r15 1 1.12 1.29 0.80 0.92
r16 1 1.11 1.19 0.80 0.91
r17 1 1.07 1.17 0.80 0.87
r18 1 1.15 1.18 0.80 0.95
r19 1/2 1.59 1.39 0.40 1.49
r20 1 1 1 0.80 0.80

Table 5: Activation function A∆a

q1,q2 where the base-level activation was updated by
ϕδ,s with δ = 0.2 and s−1(1) = (∆a)θ

A∆a
q1

beforehand. A∆a

q1 and A∆a

q2 are recalled
for comparison. B∆a

q1 (ri) is the base-level activation after querying q1. Selected
conditionals are boxed (threshold θ = 2.3).

activation of a conditional r so far over time (measured in the number of processed
inference requests) that the conditional r is not considered for answering a query q
after processing some other inference requests q1, . . . , qm in which r did not play a
role, although this conditional r would have been selected for answering the same
query q if q would have been asked directly, i.e. before q1, . . . , qm. In other words, we
say that r is forgotten during the processing of the queries q1, . . . , qm when the up-
date of the base-level activation of r caused by q1, . . . , qm (more precisely, caused by
the forgetting factors associated with q1, . . . , qm) is the reason why r is not selected
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for answering q.

Example 12. Let ∆a as in Table 1. We compare the activation function A∆a

q2

with respect to the query q2 = (f |cs) with the activation function A∆a

q1,q2 which is
obtained by querying q1 and updating B∆a with respect to s−1(1) = (∆a)θ

A∆a
q1

first
and by querying q2 afterwards. While in the first case the conditionals selected for
activation-based conditional inference are {r8, r9, r10, r11} (cf. Example 11), in the
second case {r1, r2, r9, r10, r11} are selected (cf. Table 5, also for the used parameters;
for answering all inference requests, we chose the same threshold θ ≥ 2.3). In
particular, this means that r8 is forgotten because it would have been selected for
answering q2 if q2 would have been asked first, but it is not selected in the case
where q2 is asked after q1. The forgetting of r8 happens because r8 did not play a
role when answering q1 and, hence, the base-level activation of r8 is lowered (compare
columns 2 and 5 of Table 5). In both cases, the query q2 is answered with no.

The final example shows how remembering is realized within our approach. Re-
membering a conditional here means that this conditional is selected for answering
a query although it has not been selected in the previous reasoning task.

Example 13. When querying q1 = (p ⇒ a|⊤) from ∆a (Table 1) with thresh-
old θ = 2.3, the conditional r10 is not selected (cf. Table 5) and consequently its
base-level activation is decreased (also cf. Table 5). After this, it has the lowest
base-level activation of all conditionals in ∆a. However, it turns out that this con-
ditional is selected and, hence, remembered when asking for q2 = (f |cs) afterwards
(cf. Example 12).

Note that also a stronger variant of remembering can be observed in our ap-
proach: It can happen that a conditional is not selected for answering a query q
but over time this conditional is considered in other reasoning tasks such that its
base-level activation increases to such an extend that when it comes to the query q
again this conditional is selected as of now. Although the base-level activation of
a conditional may have been decreased over time through the forgetting factor to
nearly zero, the conditional can still be selected by a selection of conditionals s if
the spreading activation is high enough to compensate the low base-level activation.

5 Conclusions and Future Work
In this paper, we combined conditional reasoning based on ranking semantics and
the cognitive architecture ACT-R [5, 4] and, therewith, developed a prototypical
model for activation-based conditional inference. More technically, we reformulated
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the activation function from ACT-R for conditionals and selected the conditionals
with the highest degree of activation for focused inference [23]. Focused inference
means drawing inferences from a subset of a belief base instead of considering the
whole belief base. One motivation for doing so, besides computational aspects, is
to mimic human reasoning more adequately. For example, with activation-based
conditional inference it is possible to implement several aspects of human reasoning
into modern expert systems such as focusing, forgetting, and remembering.

The activation function in ACT-R comprises several cognitive concepts which
describe how humans retrieve their beliefs when solving reasoning tasks. Basically,
it splits into the base-level activation formalizing the entrenchment of the beliefs in
the reasoner’s memory and the spreading activation which reflects how strongly a
reasoning task, here an inference request, triggers the single beliefs. In this paper,
we gave a blueprint on how these cognitive concepts can be formalized in a condi-
tional logical setting and proved its beneficing by means of illustrating examples.
Therewith, we detached ACT-R from its production system-based inference engine
and developed a test field for cognitive conditional reasoning.

The main challenge for future work is to find for a given query q and a given
inference operator I a proper least subset ∆′ of a belief base ∆ such that the query q
is answered the same with respect to ∆′ as to ∆, i.e., [[q]]I∆′ = [[q]]I∆, without hav-
ing to draw the computationally expensive inference [[q]]I∆. This would strengthen
the justification of focused inference in view of both relevance and computational
aspects. A helpful property in this context might be Semi-Monotony which is, for
instance, satisfied by the System P inference operator IP and which guarantees that
no other inferences can be drawn from subsets of the belief base ∆ than from ∆
itself. Further tasks for future work are the training of our model on real test data
in order to find suitable choices for the parameters of our model, and the investiga-
tion of the complexity of our approach. We expect that the benefit of our approach
in terms of computational costs heavily depends on the chosen inference formalism
and cannot be meaningfully answered in general. At least the (history-independent
part of the) base-level activation and the degrees of association are independent of
the inference query and can be pre-calculated for each belief base.
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Abstract

Various empirical methods were used to test whether humans agree with pos-
tulates of non-monotonic reasoning and belief change. This work investigates
through surveys whether postulates of revision and update are plausible with
human reasoners when presented as material implication statements. We used
statistical methods to measure the association between the antecedent and the
consequent of each postulate. The results show that participants tend to find
postulates of update more plausible than postulates of revision.

1 Introduction
The study of non-monotonic reasoning and belief change presents a formal way for
a reasoner to change their beliefs to accommodate new information. This is similar
to how humans reason every day. The hallmark non-monotonic reasoning problem
in AI is that of “Tweety the bird” which presents the evidence that penguins are
non-flying birds and that this evidence defeats the accepted premise that birds can
fly [28]. In the cognitive science and AI communities, an ongoing goal is to model
and predict the way people draw conclusions in everyday situations [31]. Ragni et
al. [29] argue that future technologies will increasingly interact with humans and
demonstrate cognitive features such as tolerance to exceptions, robustness, and the
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flexibility to accommodate new information. Human belief change has been studied
using various approaches in the AI and cognitive science communities. The studies
that stem from AI focus on how human reasoners judge the content and structure of
logical arguments, and what can be inferred from a set of facts. Experiments in the
form of surveys test how logic-based theories and properties are received by human
reasoners. For example, Da Silva Neves et al. [24] surveyed English translations
of the postulates of defeasible reasoning, judging the premises and conclusion sepa-
rately, for plausibility with human reasoners. Ragni et al. [27] compared predictions
of logical systems of defeasible reasoning, as opposed to a set of postulates, to the
Suppression Task [7], before surveying English translations of the predictions with
human reasoners. The studies that stem from cognitive science use experiments to
understand the factors that influence cognition and construct mental models that
explain human belief change. For example, Knauf et al. [21] study how humans
revise their beliefs about objects and its position in space when presented with new
information. We make two hypotheses about humans and belief change. We hy-
pothesise that human reasoners judge the postulates for belief revision, given by
Alchourrón, Gärdenfors and Makinson (AGM) [1], as true. We also hypothesise
that human reasoners judge the postulates for belief update, given by Katsuno and
Mendelzon (KM) [20], as true. The postulates are formulated in propositional logic
and we test this hypothesis empirically. Additionally, we note that once our hy-
potheses are tested, our results can be transferred to other forms of logic.
The outline of the rest of this paper is as follows. In Section 2, we give preliminaries
for propositional logic and introduce the postulates for revision and update. In Sec-
tion 3, we describe our choice of representation for the postulates, the experimental
setup, and ethical issues. We report on our experimental data and initial results in
Section 4. In Section 5, we discuss the results from our experiments and suggest
avenues for future work. Furthermore, we note that this work builds on previous
work that investigated the relationship between postulates of defeasible reasoning
[3] and belief change [4] with human reasoners.

2 Background
2.1 Preliminaries
We consider an infinite propositional language L and denote the set consisting of
all the propositional atoms in L by Σ. Atoms are represented by lowercase Roman
letters e.g. a, b, c, etc., and formulas are denoted by lowercase Greek letters e.g.
α, β, γ, etc. In the belief change community, it is typical to represent the beliefs of a
reasoner in one of three ways. The first is a knowledge base K that contains a finite
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set of beliefs. The second is a belief set that uses a logically closed set of formulas e.g.
K such that K = CnpKq where Cn is the logical closure operator. The last is a belief
base that uses a formula ψ to represent a reasoner’s beliefs. We use the latter two for
revision (Section 2.2) and update (Section 2.3), respectively. Boolean operations
of negation (␣), conjunction (^), disjunction (_), material implication (Ñ )and
material equivalence (Ø) are used to combine propositional formulas. In addition,
we define the notions of interpretation, satisfaction, and models in the following.
An interpretation of L is a function from Σ to {T,F}. We denote an interpretation
by a tuple representing each propositional atom’s value, e.g. if Σ “ te, f, g, hu then
<T, F, T, F> is the interpretation which maps e, f, g, h to T, F, T, F respectively.
A model of a propositional formula α is an interpretation that makes α true. We
say that a propositional formula δ is complete if for any propositional formula, ν, δ
implies ν or δ implies ␣ν. A set of propositional formulas is satisfiable if at least
one interpretation makes every formula in the set true. The set of interpretations
that satisfy a formula α is called the set of models of α, and is denoted by Modpαq.

2.2 Postulates for revision

Alchourrón, Gärdenfors and Makinson (AGM) [1] produced influential work in the
study of theory contraction and revision. Contraction is the process of reducing a set
of sentences to take out a proposition while revision incorporates a proposition into
a set of sentences. They investigated partial meet contraction functions and defined
the basic postulates of these functions. They have shown that the properties of
partial meet contraction functions, viz. closure, success, inclusion, vacuity, recovery,
and extensionality, satisfy the Gärdenfors rationality postulates [12] and that they
are sufficiently general to provide a representation theorem for those postulates. An
important outcome of their work is the properties and representation theorem for
contraction functions, which have been extended to revision functions in later work.
Revision is an approach to reasoning with changing beliefs under the assumption
that the world did not undergo a fundamental change. A revision operation allows
a reasoner to add new information to his beliefs if the new information is consistent
with his beliefs. A revision operation also allows a reasoner to add an exception
to his beliefs to account for the situation where this exception or new information
is inconsistent with his beliefs. Moreover, the result of a revision operation must
always be that a reasoner’s beliefs do not contradict one another. Katsuno and
Mendelzon [19] investigated the semantics of revising a belief base with sets of
propositions. In the KM framework for set revision, K is a deductively closed belief
set and µ and ϕ are formulas. K ˚ µ means the revision of K by µ. K ` µ is the
smallest deductively closed set containing K and µ. KK is the set consisting of all the
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propositional formulas. The KM postulates for set revision are given by (˚1)–(˚8).

(˚ 1) K ˚ µ is a belief set.

(˚ 2) µ P K ˚ µ
(˚ 3) K ˚ µ Ď K ` µ
(˚ 4) If ␣µ R K, then K ` µ Ď K ˚ µ
(˚ 5) K ˚ µ “ KK only if µ is unsatisfiable

(˚ 6) If µ ” ϕ then K ˚ µ ” K ˚ ϕ.

(˚ 7) K ˚ pµ^ ϕq Ď pK ˚ µq ` ϕ
(˚ 8) If ␣ϕ R K ˚ µ then pK ˚ µq ` ϕ Ď K ˚ pµ^ ϕq

2.3 Postulates for update
Katsuno and Mendelzon [18] gave a characterisation of all revision methods that
satisfy the AGM postulates in terms of a pre-order among models. In subsequent
work [20], they defined postulates for updating a finite propositional knowledge base
by partial orders or partial pre-orders over interpretations. The class of operators
defined generalises Winslett’s Possible Models Approach (PMA) [34], which Kat-
suno and Mendelzon argue is an update operator given that the PMA changes each
world independently. Herzig and Rifi [17] used the KM postulates for update as a
standard for evaluating ten different propositional update operations in the litera-
ture. In later work, Herzig et al. [16] studied a family of belief update operators by
analysing the interplay between formulas and literals. They defined the operation
of update as follows: first, omit from the belief base every literal on which the input
formula has a negative impact and then conjoin the resulting base with the input
formula. They evaluated the update operators in two dimensions: the logical dimen-
sion, by checking the status of KM postulates, and the computational dimension,
by identifying the complexity of several decision problems. The KM postulates have
also been used by Miller and Muise [23] to evaluate a belief update mechanism for
Proper Epistemic Knowledge Bases. This mechanism guarantees consistency in the
knowledge base when new beliefs are added. More recently, Creignou et al. [9]
argued that belief update within fragments of classical logic has not been addressed
thus far. They investigated the behaviour of refined update operators concerning
the satisfaction of the KM postulates and, in this context, highlighted the differences
between revision and update. Ribeiro et al. [30] used the KM postulates to define a
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class of belief update functions, called royal splinter functions, for non-finitary logics.
Update is an approach to reasoning with changing beliefs after some fundamental
shift in the world occurred. The KM framework for update uses a formula ψ to
denote a belief base. When we update ψ with new information µ, written ψ ˛ µ, we
are saying that we used to believe ψ, we know now that µ holds, and we need to
modify ψ by adding µ, acknowledging that we may have been wrong if µ contradicts
ψ. The KM postulates for base update are given by (˛1)–(˛8):

p˛ 1q ψ ˛ µ implies µ

p˛ 2q If ψ implies µ then ψ ˛ µ is equivalent to ψ

p˛ 3q If both ψ and µ are satisfiable then ψ ˛ µ is also satisfiable

p˛ 4q If ψ1 Ø ψ2 and µ1 Ø µ2 then ψ1 ˛ µ1 Ø ψ2 ˛ µ2

p˛ 5q pψ ˛ µq ^ ϕ implies ψ ˛ pµ^ ϕq
p˛ 6q If ψ ˛ µ1 implies µ2 and ψ ˛ µ2 implies µ1 then ψ ˛ µ1 Ø ψ ˛ µ2

p˛ 7q If ψ is complete then pψ ˛ µ1q ^ pψ ˛ µ2q implies ψ ˛ pµ1 _ µ2q
p˛ 8q pψ1 _ ψ2q ˛ µØ pψ1 ˛ µq _ pψ2 ˛ µq
p˛ 9q If ψ is complete and pψ ˛µq^ϕ is satisfiable then ψ ˛pµ^ϕq implies pψ ˛µq^ϕ
Revision and update differ from non-monotonic logic using the concept of orders on
interpretations. A homogeneous relation ď on some given set P , so that by definition
ď is some subset of P ˆ P and the notation a ď b is used in place of pa, bq P P , is
called a preorder if the relation is also transitive and reflexive. A reflexive relation
has the property that a ď a for all a P P . A transitive relation has the property that
if a ď b and b ď c then a ď c for all a, b, c P P . If a preorder is also anti-symmetric,
that is, a ď b and b ď a implies a “ b, then it is a partial preorder. A preorder
is total if a ď b or b ď a for all a, b P P . A revision operator satisfies postulates
(˚ 1)–(˚ 8) using the notion of a total preorder on interpretations while an update
operator satisfies postulates (˛ 1)–(˛ 6) using partial preorders on interpretations.
Katsuno and Mendelzon [20] have shown that by replacing postulates (˛ 6) and (˛
7) with a new postulate (˛ 9), the class of update operators can be designed using
total preorders. The second and more important difference between revision and
update is that, in the case of update, a different ordering is induced by each model
of ψ, while for revision, only one ordering is induced by the whole of K.
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3 Methodology
The methodology we employ uses empirical evidence and statistical analysis to de-
termine whether our hypotheses are true. We present the postulates as material
implication statements and translate them into English before surveying them with
human reasoners for plausibility. The survey material is given in Appendix B (Ex-
periment 1) and Appendix C (Experiment 2). The symbol J denotes a tautological
antecedent. The single turnstile $ denotes entailment e.g. α $ γ is taken as “from
α it follows that γ holds”. For consistent notation amongst both sets of postulates,
some symbols and postulate metadata have been changed. The postulate metadata
“is equivalent to” was replaced with ”, and “implies” was replaced with $. The
symbol Ø was replaced with ”. The antecedent and consequent for each postulate
was translated into English and surveyed with human reasoners for plausibility on
Amazon Mechanical Turk (MTurk). In our analysis, we discuss the effect of the
antecedent and the consequent on the plausibility of each postulate.

3.1 Methods of analysis
We compute the number of judgements, given on a scale from 1 (not plausible) to 10
(plausible) of the antecedent and the consequent of each postulate. The variables of
our study are the judgement of the antecedent and the consequent, respectively. The
data is captured in a 2 ˆ 2 contingency table. We assume the relationship between
the variables is linear. The phi-coefficient [15] is used to measure the strength of
the relation. The phi-coefficient formula for the 2ˆ 2 contingency table is:

ϕ “ TT.FF TF.FTappTT ` TF qpFT ` FF qpTT ` FT qpTF ` FF qq (1)

The values of T and F in Equation 1 correspond to a combination of the number
of judgements of the antecedent and consequent. For example, TT is the number
of judgements of the antecedent and the consequent being true. The phi-coefficient
produces a value in {-1;1}. Two independent variables are strongly correlated when
ϕ is close to 1, and weakly correlated when ϕ is close to 0. A negative value of ϕ
indicates an inverse relationship exists between two independent variables. A value
of 0 means there is no relationship. An error can occur when the denominator of the
phi-coefficient evaluates to 0, because of any of the four sums in the denominator
evaluating to 0. This is treated by setting the denominator to 1, an arbitrary value
[32], which means that no association exists. We compute the significance of the
phi-coefficient using Fisher’s exact test [14] to test whether the relation holds for our
participants and given our relatively small sample size of fewer than 60 participants.
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3.2 Ethical issues

We obtained ethical clearance from the Faculty of Science Ethics Research Com-
mittee at the University of Cape Town. We include the consent forms and a link
to our data management plan in our GitHub project repository, linked in Appendix
A. For the design of our experiments, we utilised Google Forms to create surveys.
The surveys were hosted on MTurk from which we crowdsourced our data collection.
Google Forms, Qualtrics, and SurveyMonkey are examples of tools for creating on-
line surveys with a variety of question types. The surveys are typically distributed
by email invitation or by sharing a unique URL. In terms of data collection for these
tools, the onus is on the survey creator to identify participants and elicit responses.
In contrast, crowdsourcing is a means of gathering a response to a task from a large
audience, usually via the internet. MTurk builds on the crowdsourcing concept by
facilitating task creation, hosting tasks, and managing data collection through its
database of registered participants. Bentley et al. [5] found that crowdsourced
surveys are completed faster and cost less than traditional surveys, with no signifi-
cant (ă 10%) loss in accuracy. To ensure that responses are of acceptable quality,
Grootswagers [13] suggests the inclusion of a trial task before the primary task to
give participants an idea of what is expected from them. An issue with anonymous
data collection from MTurk is that unsupervised participants tend to be less atten-
tive than supervised participants. This is mitigated by checking in on participants
at various stages of the task. The check-in aims to remind inattentive participants
to pay more attention, typically through asking a trial question or manipulating
an instruction [25]. When check-ins are conducted this way, there is less exper-
imenter bias [26], subject crosstalk [10], and participant reactance. Springer et
al. [33] recommend using a neutral non-persuasive tone in the language of the task
to diminish the likelihood of selection bias based on persuasive language and tar-
get participant traits. The effect of participant performance on MTurk at different
times of the day is robust, while there is some variation in participants’ personality
and prior experience across these recruitment times [2]. Another concern of mass
anonymised data collection is accepting participant responses at face value. This is
problematic because participants who depend on MTurk as a source of income are
primarily incentivised by monetary reward rather than interest in the task content.
Participants also learn and apply behaviour from similar tasks which introduce un-
known bias in their responses. MTurk has been shown to have limited ideological
representation, in particular, where subjects hold more liberal attitudes than the
general public [6]. The difference in convenience and probability sampling should
be well-substantiated by repeat sampling over time rather than an analysis of back-
ground characteristics alone [8]. We also used Mechanical Turk in previous work [3]
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to survey the correspondence of human reasoning with defeasible reasoning, belief
revision, and belief update respectively. We recorded a generally positive experience
with a survey turnaround time below an hour for each participant and compensated
Workers commensurate with the local minimum hourly wage.

4 Experiments
We report on the design, participants, and observations for two experiments used to
test the plausibility of the revision and update postulates, respectively, with human
reasoners.

4.1 Experiment 1

35 MTurk participants (13 female and 22 male) judged the plausibility of English
translations of the KM revision postulates (˚ 1)–(˚ 8). The task resembled a survey.
The antecedent and consequent of each postulate was presented separately. The
responses were indicated on a scale from 1 (extremely implausible) to 10 (extremely
plausible). Participant responses were translated from numbers on a scale to binary

Postulate pÑ q

TT TF FT FF ϕ Fisher’s test p-value
(˚ 1) 31 4 0 0 0 1 not significant

34 1 0 0 0 1 not significant
(˚ 2) 30 5 0 0 0 1 not significant
(˚ 3) 31 1 2 1 0.36 0.1664 not significant
(˚ 4) 24 4 7 0 0.18 0.562 not significant
(˚ 5) 32 1 0 2 0.8 0.0053 significant
(˚ 6) 4 9 5 17 0.09 0.6978 not significant
(˚ 7) 31 4 0 0 0 1 not significant
(˚ 8) 19 11 0 5 0.44 0.0135 significant

Table 1: Participant judgements of the AGM postulates

values. We used the midpoint of the scale to demarcate judgements as true (6 to
10) and false (1 to 5). In the case of a postulate antecedent comprising multiple
statements, the final judgement (true or false) of the antecedent was taken as the
logical value of the conjunction of all the statements in the antecedent. Postulate
consequents comprising multiple statements were treated in the same way. In Table
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1, TT refers to the number of participants who judged both the antecedent and
the consequent of a postulate as true. TF refers to the number of participants who
judged the antecedent as true, but the consequent as false. FT and FF are the inverse
judgements of TF and TT. Postulates (˚ 1) and (˚ 2) have FT and FF arbitrarily set
to 0 to account for our assumption that the antecedent of these postulates is always
true. The phi-coefficient was used to measure the relation between the judgement
of the antecedent and the consequent of each postulate. For postulate (˚ 5), the
relationship is strong and positive. For postulate (˚ 4), the relationship is weak
and negative. For postulate (˚ 3), (˚ 6), and (˚ 8), the relationship is weak and
positive. For postulates (˚ 1), (˚ 2) and (˚ 7), no relation exists. Fisher’s exact test
of independence was performed to examine the significance of the linear relation
between postulate antecedent and consequent. The relation for postulate (˚ 5) is
significant, which means that participants who judged the antecedent of postulate
(˚ 5) as true tended to judge its consequent as true too. The relation for postulate
(˚ 8) is also significant. However, the number of participants (TF) who violated the
material implication rule for postulate (˚ 8) weakened the trend that the participants
who judged the antecedent of postulate (˚ 8) as true tended to judge its consequent
as true too. The results for all other postulates are not significant. Overall, 2 out of
8 postulates were found true by participants when judging the antecedent and the
consequent of each postulate separately. These results suggest that the participants
do not tend to find the KM revision postulates true.

4.2 Experiment 2

37 MTurk participants (18 female and 17 male) judged the plausibility of English
translations of the KM update postulates (˛ 1)–(˛ 8). The task format was the same
as the previous experiment. We applied the same data transformation process as the
previous experiment. Postulates (˛ 1), (˛ 5), and (˛ 8) have FT and FF arbitrarily
set to 0 to account for our assumption that the antecedent of these postulates is
always true. As before, the phi-coefficient was used to measure the relation between
the judgement of the antecedent and the consequent of each postulate. For postulate
(˛ 2), (˛ 4), and (˛ 6), the relationship is strong and positive. For postulate (˛ 3), (˛
7), and (˛ 9), the relationship is weak and positive. No relation exists for postulate
(˛ 1), (˛ 5) and (˛ 8). According to Fisher’s exact test, the relationship for postulate
(˛ 2), (˛ 3), (˛ 4), and (˛ 6)is significant, which means that participants who judged
the antecedent of these postulates as true tended to judge its consequent as true too.
The results for all other postulates are not significant. Overall, 4 out of 9 postulates
were found true by participants when judging the antecedent and the consequent of
each postulate separately. These results suggest that the participants tend to find
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Postulate pÑ q

TT TF FT FF ϕ Fisher’s test p-value
(˛ 1) 29 8 0 0 0 1 not significant
(˛ 2) 25 1 4 7 0.66 0.0002 significant
(˛ 3) 30 0 5 2 0.49 0.0315 significant
(˛ 4) 13 0 7 17 0.68 0 significant
(˛ 5) 35 2 0 0 0 1 not significant
(˛ 6) 24 5 0 8 0.71 0 significant
(˛ 7) 21 4 7 5 0.28 0.108 not significant
(˛ 8) 20 17 0 0 0 1 not significant
(˛ 9) 24 5 4 4 0.31 0.0784 not significant

Table 2: Participant judgements of the KM postulates

the KM postulates true.

5 Discussion and Conclusions

In the cognitive science and AI communities, an ongoing goal is to explore the cor-
respondence between formal logic, philosophy, and human reasoning. For example,
Elio and Pelletier [11] conducted experiments to determine which set of sentences
to believe when additional information contradicts the initial set, a problem of belief
revision. In parallel, in the AI community, an ongoing goal is to formalise models of
human reasoning for use in AI-enriched systems. Ragni et al. [27, 29] have demon-
strated that classical logic fails to capture human inference, whereas non-monotonic
logic has the potential to do so.

Our work builds on previous empirical studies in which humans judged the pos-
tulates of revision and update. The methodology we used to assess participants’
judgements of the postulates is refined from Da Silva Neves et al. [24], with the
addition of reproducible rigorous statistical analysis. In our experiments, we first
presented participant judgements of the revision and update postulates, and tested
whether the judgements hold in general for our participants. Overall, 2 out of 8 KM
revision postulates were found true by participants when judging the antecedent
and the consequent of each postulate separately. These results suggest that the
participants do not tend to find the KM revision postulates true. By presenting
alternative conclusions to the postulates, we can determine whether the postulate
content had an effect on the participants’ judgements. In contrast, 4 out of 9 KM
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update postulates were found true by participants, with higher measures of associ-
ation than for the revision postulates, using the same material. This suggests that
the postulate content was sufficient for participants to understand the KM update
postulates. Given that the belief base representation was used for the update pos-
tulates, we propose to use the same representation for the revision postulates in a
future investigation. With common representations and material, and the poten-
tial for alternative conclusions, we can more accurately determine whether human
reasoners find postulates of revision and update true.

In future work, we will use a combined theoretical and empirical approach to test
the relation between human reasoners and postulates of belief change. The theoret-
ical part will build on this work by exploring inter-postulate and inter-framework
relationships. Inter-postulate relationships refer to the postulates that depend on
each other or that involve similar underlying conditions. Inter-framework relation-
ships refer to corresponding postulates in the revision and update settings, as well
as between other forms of logic. Once these relationships have been identified, they
will provide the basis for a refined empirical investigation. The empirical part will
focus on identifying representations of the postulates that support both the theory
and the beliefs of human reasoners. Since the linear relation between antecedent and
consequent is generally weak, we propose to test alternative conclusions to the pos-
tulates conclusions with human reasoners. The data from the new investigation will
give us a stronger position to determine whether human reasoners find postulates
of revision and update plausible. Our analysis will include an evaluation of the new
data on Cognitive Computation for Behavioural Reasoning Analysis (CCOBRA)1, a
program that uses cognitive models to predict individual responses. The evaluation
will allow us to measure the relation between revision and update for each partici-
pant. Furthermore, non-parameterised statistical methods, that is, methods that do
not assume how the sample data is distributed, e.g. the Wilcoxon signed-rank test
[22], will be used to interpret the significance of the results.
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A Supplementary Information
The Github repository for this work can be accessed via this URL,
https://tinyurl.com/mre8dt84.

B Material for the revision postulates
The material for the revision experiment is given in Table 3–10.

Postulate Antecedent Consequent
(˚ 1)

J K “ CnpKq
˚assumed to be true You accept both your

beliefs and the conse-
quences of your beliefs.

J K ˚ µ “ CnpK ˚ µq
˚assumed to be true Changing your beliefs

to accept the infor-
mation that Zeeta M
is a classical pianist
means the same the
consequences of chang-
ing your beliefs to ac-
cept that Zeeta M is a
classical pianist.

Table 3: Material to test (˚ 1)
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Postulate Antecedent Consequent
(˚ 2)

J µ P K ˚ µ
˚assumed to be true The information that

Chris P is a waiter is a
part of your beliefs af-
ter changing your be-
liefs to accept that
Chris P is a waiter.

Table 4: Material to test (˚ 2)

Postulate Antecedent Consequent
(˚ 3)

K ˚ µ K ` µ

The information that
Jacob B drives at night
follows from changing
your beliefs to accept
the information that
Jacob B is a truck
driver.

The information that
Jacob B drives at night
follows from adding
the information that
Jacob B is a truck
driver to your beliefs.

Table 5: Material to test (˚ 3)
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Postulate Antecedent Consequent
(˚ 4)

K * ␣µ K ` µ ( ϕ

The information that
Jessica B is a yoga in-
structor does not con-
tradict your beliefs.

The information that
Jessica B does teach
breathing exercises fol-
lows from adding the
information that Jes-
sica B is a yoga in-
structor to your be-
liefs.

K ˚ µ ( ϕ

The information that
Jessica B does teach
breathing exercises
follows from changing
your beliefs to accept
the information that
Jessica B is a yoga
instructor.

Table 6: Material to test (˚ 4)

Postulate Antecedent Consequent
(˚ 5)

µ * K K ˚ µ * K

A contradiction does
not follow from the in-
formation that Wilma
D is a car owner.

A contradiction does
not follow from chang-
ing your beliefs to ac-
cept that Wilma D is
a car owner.

Table 7: Material to test (˚ 5)
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Postulate Antecedent Consequent
(˚ 6)

µ ” ϕ K ˚ µ ( γ

The information that
if Noel W is a fire-
fighter then Noel W
is strong is equivalent
to the information that
either Noel W is not a
firefighter or Noel W is
strong.

The information that
Noel W saves lives
follows from changing
your beliefs to accept
that if Noel W is a fire-
fighter then Noel W is
strong.

K ˚ ϕ ( γ

The information that
Noel W saves lives
follows from changing
your beliefs to accept
that either Noel W
is not a firefighter or
Noel W is strong.

Table 8: Material to test (˚ 6)

265



Baker and Meyer

Postulate Antecedent Consequent
(˚ 7)

K ˚ pµ^ ϕq ( γ (K ˚ µq ` ϕ ( γ

The information that
Philip P does carry
a gun follows from
changing your beliefs
to accept both the in-
formation Philip P is
a police officer and
Philip P can arrest a
criminal.

The information that
Philip P does carry a
gun follows from first
changing your beliefs
to accept that Philip P
is a police officer and
then changing your be-
liefs to accept that
Philip P can arrest a
criminal.

Table 9: Material to test (˚ 7)
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Postulate Antecedent Consequent
(˚ 8)

K ˚ µ * ␣ϕ pK ˚ µq ` ϕ ( γ

Changing your beliefs
to accept the informa-
tion that Mark M is a
science professor does
not contradict the in-
formation that Mark
M does enjoy solving
problems.

The information that
Mark M is a good
teacher follows from
first changing your be-
liefs to accept the in-
formation that Mark
M is a science profes-
sor, and then adding
to your knowledge the
information that Mark
M does enjoy solving
problems.

K ˚ pµ^ ϕq ( γ

The information that
Mark M is a good
teacher follows from
changing your beliefs
to accept both Mark M
is a science professor
and Mark M does en-
joy solving problems.

Table 10: Material to test (˚ 8)
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