College Publications logo   College Publications title  
View Basket
Homepage Contact page
   
 
AiML
Algorithmics
Cadernos de Lógica e Computação
Cadernos de Lógica e Filosofia
Cahiers de Logique et d'Epistemologie
Communication, Mind and Language
Computing
Cuadernos de lógica, Epistemología y Lenguaje
DEON
Dialogues
Economics
Encyclopaedia of Logic
Filosofia
Handbooks
IfColog series in Computational Logic
IfColog Lecture series
IfColog Proceedings
Journals
Journal of Applied Logics - IfCoLoG Journal of Logics and their Applications
About
Editorial Board
Scope of the Journal
Submissions
Forthcoming papers
Law and Society
Logic PhDs
Logic, Methodology and Philosophy of Science
The Logica Yearbook
Neural Computing and Artificial Intelligence
Philosophy
Research
The SILFS series
Studies in Logic
Studies in Talmudic Logic
Systems
Texts in Mathematics
Tributes
Other
Digital Downloads
Information for authors
About us
Search for Books
 



Forthcoming papers


Back

A propositional logic with binary metric operators

Nenad Stojanovic, Nebojsa Ikodinovic and Radosav Djordjevic

The aim of this paper is to combine distance functions and Boolean propositions by developing a formalism suitable for speaking about distances between Boolean formulas. We introduce and investigate a formal language that is an extension of classical propositional language obtained by adding new binary (modal-like) operators of the form $D_{leqslant s} $ and $D_{geqslant s}$, $sinmathds{Q}_0^+$. Our language all-ows making formulas such as $D_{leqslant s}(alpha,beta)$ with the intended meaning `distance between formulas $alpha$ and $beta$ is less than or equal to $s$'. The semantics of the proposed language consists of possible worlds with a distance function defined between sets of worlds. Our main concern is a complete axiomatization that is sound and strongly complete with respect to the given semantics.







© 2005–2018 College Publications / VFH webmaster