College Publications logo   College Publications title  
View Basket
Homepage Contact page
   
 
AiML
Academia Brasileira de Filosofia
Algorithmics
Arts
Cadernos de Lógica e Computação
Cadernos de Lógica e Filosofia
Cahiers de Logique et d'Epistemologie
Communication, Mind and Language
Computing
Comptes Rendus de l'Academie Internationale de Philosophie des Sciences
Cuadernos de lógica, Epistemología y Lenguaje
DEON
Dialogues
Economics
Encyclopaedia of Logic
Filosofia
Handbooks
Historia Logicae
IfColog series in Computational Logic
Journal of Applied Logics - IfCoLog Journal
Journals
Landscapes
Logics for New-Generation AI
Logic and Law
Logic and Semiotics
Logic PhDs
Logic, Methodology and Philosophy of Science
The Logica Yearbook
Marked States
Neural Computing and Artificial Intelligence
Philosophy
Research
The SILFS series
Studies in Logic
History of Logic
Logic and cognitive systems
Mathematical logic and foundations
Studies in Logic and Argumentation
Logic and Bounded Rationality
Studies in Talmudic Logic
Student Publications
Systems
Texts in Logic and Reasoning
Texts in Mathematics
Tributes
Other
Digital Downloads
Information for authors
About us
Search for Books
 



Studies in Logic


Back

Incompleteness in the Land of Sets

Melvin Fitting

Russell’s paradox arises when we consider those sets that do not belong to themselves. The collection of such sets cannot constitute a set. Step back a bit. Logical formulas define sets (in a standard model). Formulas, being mathematical objects, can be thought of as sets themselves—mathematics reduces to set theory. Consider those formulas that do not belong to the set they define. The collection of such formulas is not definable by a formula, by the same argument that Russell used. This quickly gives Tarski’s result on the undefinability of truth. Variations on the same idea yield the famous results of Gödel, Church, Rosser, and Post.

This book gives a full presentation of the basic incompleteness and undecidability theorems of mathematical logic in the framework of set theory. Corresponding results for arithmetic follow easily, and are also given. Gödel numbering is generally avoided, except when an explicit connection is made between set theory and arithmetic. The book assumes little technical background from the reader. One needs mathematical ability, a general familiarity with formal logic, and an understanding of the completeness theorem, though not its proof. All else is developed and formally proved, from Tarski’s Theorem to Gödel’s Second Incompleteness Theorem. Exercises are scattered throughout.

February 2007

ISBN 9781904987345

Buy from Amazon: UK   US   


Review






© 2005–2024 College Publications / VFH webmaster